913 resultados para INDUCED LUNG INJURY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute respiratory distress syndrome is the most severe manifestation of acute lung injury and it is associated with high mortality rate. Despite better understanding of ARDS pathophysiology, its mechanism is still unclear. Mechanical ventilation is the main ARDS supportive treatment. However, mechanical ventilation is a non-physiologic process and complications are associated with its application. Mechanical ventilation may induce lung injury, referred to as ventilator-induced lung injury. Frequently, VILI is related to macroscopic injuries associated with alveolar rupture. The present article is a review of the literature on ventilator-induced lung injury in acute respiratory distress syndrome. Animal and human studies were reviewed. We mainly selected publications in the past 5 years, but did not exclude commonly referenced and highly regarded older publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods: Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results: Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion: In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Inhaled nitric oxide (INO) allows selective pulmonary vasodilation in acute respiratory distress syndrome and improves PaO2 by redistribution of pulmonary blood flow towards better ventilated parenchyma. One-third of patients are nonresponders to INO, however, and it is difficult to predict who will respond. The aim of the present study was to identify, within a panel of inflammatory mediators released during endotoxin-induced lung injury, specific mediators that are associated with a PaO2 response to INO. METHODS: After animal ethics committee approval, pigs were anesthetized and exposed to 2 hours of endotoxin infusion. Levels of cytokines, prostanoid, leucotriene and endothelin-1 (ET-1) were sampled prior to endotoxin exposure and hourly thereafter. All animals were exposed to 40 ppm INO: 28 animals were exposed at either 4 hours or 6 hours and a subgroup of nine animals was exposed both at 4 hours and 6 hours after onset of endotoxin infusion. RESULTS: Based on the response to INO, the animals were retrospectively placed into a responder group (increase in PaO2 > or = 20%) or a nonresponder group. All mediators increased with endotoxin infusion although no significant differences were seen between responders and nonresponders. There was a mean difference in ET-1, however, with lower levels in the nonresponder group than in the responder group, 0.1 pg/ml versus 3.0 pg/ml. Moreover, five animals in the group exposed twice to INO switched from responder to nonresponder and had decreased ET-1 levels (3.0 (2.5 to 7.5) pg/ml versus 0.1 (0.1 to 2.1) pg/ml, P < 0.05). The pulmonary artery pressure and ET-1 level were higher in future responders to INO. CONCLUSIONS: ET-1 may therefore be involved in mediating the response to INO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN: Prospective, randomized, laboratory animal study. SUBJECTS: Twenty-seven male New Zealand white rabbits. INTERVENTIONS: Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS: In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic inflammation leading to pulmonary fibrosis develops in response to environmental pollutants, radiotherapy, or certain cancer chemotherapeutic agents. Studies have shown that several cell types accumulate during the inflammatory process, but little information is known about what actually triggers and stimulates persistent inflammation culminating in fibrosis. As a first step in defining the events that precipitate inflammation in the lung, the biological mechanism(s) mediating apoptosis and cellular targets must be identified. The purpose of this study was to determine the molecular mechanism(s) of bleomycin-induced apoptosis in the lung using mice deficient in genes that we hypothesized to play a key role in apoptosis. Intratracheal administration of bleomycin led to caspase-mediated DNA fragmentation characteristic of apoptosis. The effects of bleomycin were associated with translocation of p53 from the cytosol to the nucleus only in alveolar macrophages that had been exposed to the drug in vivo, suggesting that the lung microenvironment regulated p53 activation. Experiments with a thiol antioxidant (N-acetylcysteine) in vivo and nitric oxide donors in vitro confirmed that reactive oxygen species were required for p53 activation. A specific role for NO was demonstrated in experiments with iNOS−/− macrophages, which failed to demonstrate nuclear p53 localization after in vivo bleomycin exposure. Strikingly, rates of bleomycin-induced apoptosis were at least two-fold higher in iNOS−/− and p53−/− C57BL/6 mice compared to wild-type controls. Laser Scanning Cytometry (LSC) analysis revealed that bleomycin exposure resulted in a 2-fold induction in Fas and FasL expression in wild-type mice but not iNOS−/− or p53−/− mice. Experiments using gld mice confirmed that the Fas/FasL pathway was the primary mechanism of bleomycin-induced apoptosis in the lung. LSC-mediated analysis indicated that bleomycin exposure resulted in a 2-fold induction in Bax expression in iNOS−/− and P53−/− mice but not wild-type mice. Furthermore, LSC analysis revealed that bleomycin exposure induced a 3-fold increase in thrombospondin expression in wild-type mice. However, thrombospondin was not expressed in either the iNOS−/− or p53−/− mice, implicating a thrombospondin-mediated apoptotic cell clearance mechanism in the lung. Together, these results demonstrate that iNOS and p53 positively regulate apoptosis via the Fas/FasL pathway and mediate a novel apoptosis-suppressing pathway in the lung. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary fibrosis (PF) is the result of a variety of environmental and cancer treatment related insults and is characterized by excessive deposition of collagen. Gas exchange in the alveoli is impaired as the normal lung becomes dense and collapsed leading to a loss of lung volume. It is now accepted that lung injury and fibrosis are in part genetically regulated. ^ Bleomycin is a chemotherapeutic agent used for testicular cancer and lymphomas that induces significant pulmonary toxicity. We delivered bleomycin to mice subcutaneously via a miniosmotic pump in order to elicit lung injury (LI) and quantified the %LI morphometrically using video imaging software. We previously identified a quantitative trait loci, Blmpf-1(LOD=17.4), in the Major Histocompatibility Complex (MHC), but the exact genetic components involved have remained unknown. ^ In the current studies, Blmpf-1 was narrowed to an interval spanning 31.9-32.9Mb on Chromosome 17 using MHC Congenic mice. This region includes the MHC Class II and III genes, and is flanked by the TNF-alpha super locus and MHC Class I genes. Knockout mice of MHC Class I genes (B2mko), MHC Class II genes (Cl2ko), and TNF-alpha (TNF-/-) and its receptors (p55-/-, p75-/-, and p55/p75-/-) were treated with bleomycin in order to ascertain the role of these genes in the pathogenesis of lung injury. ^ Cl2ko mice had significantly better survival and %LI when compared to treated background BL/6 (B6, P<.05). In contrast, B2mko showed no differences in survival or %LI compared to B6. This suggests that the MHC Class II locus contains susceptibility genes for bleomycin-induced lung injury. ^ TNF-alpha, a Class III gene, was examined and it was found that TNF-/- and p55-/- mice had higher %LI and lower survival when compared to B6 (P<.05). In contrast, p75-/- mice had significantly reduced %LI when compared to TNF-/-, p55-/-, and B6 mice as well as higher survival (P<.01). These data contradict the current paradigm that TNF-alpha is a profibrotic mediator of lung injury and suggest a novel and distinct role for the p55 and p75 receptors in mediating lung injury. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical ventilation is the major cause of iatrogenic lung damage in intensive care units. Although inflammation is known to be involved in ventilator-induced lung injury (VILI), several aspects of this process are still unknown. Pentraxin 3 (PTX3) is an acute phase protein with important regulatory functions in inflammation which has been found elevated in patients with acute respiratory distress syndrome. This study aimed at investigating the direct effect of PTX3 production in the pathogenesis of VILI. Genetically modified mice deficient and that over express murine Ptx3 gene were subjected to high tidal volume ventilation (V-T = 45 mL/kg, PEEPzero). Morphological changes and time required for 50% increase in respiratory system elastance were evaluated. Gene expression profile in the lungs was also investigated in earlier times in Ptx3-overexpressing mice. Ptx3 knockout and wild-type mice developed same lung injury degree in similar times (156 +/- 42 min and 148 +/- 41 min, respectively: p = 0.8173). However, Ptx3 overexpression led to a faster development of VILI in Ptx3-overexpressing mice (77 +/- 29 min vs 118 +/- 41 min, p = 0.0225) which also displayed a faster kinetics of Il1b expression and elevated Ptx3, Cxcl1 and Ccl2 transcripts levels in comparison with wild-type mice assessed by quantitative real-time polymerase chain reaction. Ptx3 deficiency did not impacted the time for VILI induced by high tidal volume ventilation but Ptx3-overexpression increased inflammatory response and reflected in a faster VILI development. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.