903 resultados para Hla Class-i


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4, 5, 6, 7, 8, 9, 10, 11. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar a presença de aloanticorpos anti-HLA classe I em pacientes infectados pelo HIV-1 e relacioná-la aos diferentes cursos clínicos da doença. Amostras de sangue de 145 indivíduos HIV positivo foram coletadas em tubos com EDTA. A infecção pelo HIV-1 foi confirmada por teste ELISA e a presença de aloanticorpos anti-HLA classe I determinada em seguida. A evolução clínica foi definida como rápida (<1 ano entre diagnóstico e morte), moderada (1-3 anos) ou lenta (>3 anos). A presença de aloanticorpos anti-HLA classe I foi menor em indivíduos saudáveis em relação aos infectados pelo HIV-1 (4,2% contra 32,4%). Porém, a distribuição destes aloanticorpos entre os indivíduos infectados foi igual, independente da evolução clínica. Deste modo, a presença de aloanticorpos anti-HLA classe I não é um fator determinante na piora clínica do paciente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to detect several new HLA-A class I alleles that have been described since 1998, the original PCR-RFLP method developed to identify the 78 alleles recognized at that time at high resolution level was adapted by us for low and medium resolution levels using a nested PCR-RFLP approach. The results obtained from blood samples of 23 subjects using both the PCR-RFLP method and a commercial kit (MicroSSP1A®, One Lambda Inc.) showed an agreement higher than 95%. The PCR-RFLP adapted method was effective in low and medium resolution histocompatibility evaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin receptor (IR) and class I major histocompatibility complex molecules associate with one another in cell membranes, but the functional consequences of this association are not defined. We found that IR and human class I molecules (HLA-I) associate in liposome membranes and that the affinity of IR for insulin and its tyrosine kinase activity increase as the HLA:IR ratio increases over the range 1:1 to 20:1. The same relationship between HLA:IR and IR function was found in a series of B-LCL cell lines. The association of HLA-I and IR depends upon the presence of free HLA heavy chains. All of the effects noted were reduced or abrogated if liposomes or cells were incubated with excess HLA-I light chain, β2-microglobulin. Increasing HLA:IR also enhanced phosphorylation of insulin receptor substrate-1 and the activation of phosphoinositide 3-kinase. HLA-I molecules themselves were phosphorylated on tyrosine and associated with phosphoinositide 3-kinase when B-LCL were stimulated with insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many persistent viruses have evolved the ability to subvert MHC class I antigen presentation. Indeed, human cytomegalovirus (HCMV) encodes at least four proteins that down-regulate cell-surface expression of class I. The HCMV unique short (US)2 glycoprotein binds newly synthesized class I molecules within the endoplasmic reticulum (ER) and subsequently targets them for proteasomal degradation. We report the crystal structure of US2 bound to the HLA-A2/Tax peptide complex. US2 associates with HLA-A2 at the junction of the peptide-binding region and the α3 domain, a novel binding surface on class I that allows US2 to bind independently of peptide sequence. Mutation of class I heavy chains confirms the importance of this binding site in vivo. Available data on class I-ER chaperone interactions indicate that chaperones would not impede US2 binding. Unexpectedly, the US2 ER-luminal domain forms an Ig-like fold. A US2 structure-based sequence alignment reveals that seven HCMV proteins, at least three of which function in immune evasion, share the same fold as US2. The structure allows design of further experiments to determine how US2 targets class I molecules for degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BZLF1 antigen of Epstein-Barr virus includes three overlapping sequences of different lengths that conform to the binding motif of human leukocyte antigen (HLA) B*3501. These 9-mer ((56)LPOGQLTAy(64)), 11-mer ((54)EPLPQGQLTAy(64)), and 13-mer ((52)LPEPLPQGQLTAY(64)) peptides all bound well to B*3501; however, the CTL response in individuals expressing this HILA allele was directed strongly and exclusively towards the 11-mer peptide. In contrast, EBV-exposed donors expressing HLA B*3503 showed no significant CTL response to these peptides because the single amino acid difference between B*3501 and B*3503 within the F pocket inhibited HLA binding by these peptides. The extraordinarily long 13-mer peptide was the target for the CTL response in individuals expressing B*3508, which differs from B*3501 at a single position within the D pocket (B*3501, 156 Leucine; B*3508, 156 Arginine). This minor difference was shown to enhance binding of the 13-mer peptide, presumably through a stabilizing interaction between the negatively charged glutamate at position 3 of the peptide and the positively charged arginine at HLA position 156. The 13-mer epitope defined in this study represents the longest class I-binding viral epitope identified to date as a minimal determinant. Furthermore, the potency of the response indicates that peptides of this length do not present a major structural barrier to CTL recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of rapid acidification and alkylation can be used to characterise the redox status of oxidoreductases, and to determine numbers of free cysteine residues within substrate proteins. We have previously used this method to analyse interacting components of the MHC class I pathway, namely ERp57 and tapasin. Here, we have applied rapid acidification alkylation as a novel approach to analysing the redox status of MHC class I molecules. This analysis of the redox status of the MHC class I molecules HLA-A2 and HLA-B27, which is strongly associated with a group of inflammatory arthritic disorders referred to as Spondyloarthropathies, revealed structural and conformational information. We propose that this assay provides a useful tool in the study of in vivo MHC class I structure. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kaposi-associated Herpesvirus (KSHV) also known as Human Herpesvirus 8 (HHV-8) is associated with the development of Kaposi’s sarcoma (KS) and others limphoprolipheratives diseases such as Primary Effusion Lymphoma (PEL) and Multicentric Castleman Disease (MCD). Even though the virus is considered lymphotropic, it is able to infect others cell types such as macrophages, dendritic cells, endothelial cells, monocytes and fibroblasts. After infection, KSHV be latent expressing essential viral genes to its maintenance in a infected cell. However, in some circumstances may occur the reactivation of lytic cycle producing new viral particles. K1 protein of KSHV interferes in the cellular signaling inducing proliferation and supporting cellular transformation. K1 is encoded by viral ORF-K1, which shows high variability between different genotypes of KSHV. So far, it is not clear whether different isoforms of K1 have specific immunobiological features. The KSHV latency is maintained under strict control by the immune system supported by an adequate antigen presentation involving Human Leucocyte Antigen (HLA) class I and II. Polymorphisms of HLA class I and II genes confer an enormous variability in molecules that recognize a large amount of antigens, but also can increase the susceptibility to autoimmune diseases. Therefore, the present study aims to genotype HLA class I (A and B) and class II (DR and DQ) from volunteers to identify haplotypes that can provide better response to K1 epitopes of different KSHV genotypes. First of all, 20 volunteers were selected to genotype HLA genes. In our results we observed prevalence of certain HLA class I haplotypes as HLAA1, HLA-A2, HLA-A24, HLA-A26, HLA-B8, HLA-B18 e HLA-B44. After the in silico analysis using BIMAS and SYFPEITHI databases, we observed high scores for epitopes from the B genotype of KSHV, indicating...(Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptides presented by MHC class I molecules for CTL recognition are derived mainly from cytosolic proteins. For antigen presentation on the cell surface, epitopes require correct processing by cytosolic and ER proteases, efficient TAP transport and MHC class I binding affinity. The efficiency of epitope generation depends not only on the epitope itself, but also on its flanking regions. In this project, the influence of the C-terminal region of the model epitope SIINFEKL (S8L) from chicken ovalbumin (aa 257-264) on antigen processing has been investigated. S8L is a well characterized epitope presented on the murine MHC class I molecule, H-2Kb. The Flp-In 293Kb cell line was transfected with different constructs each enabling the expression of the S8L sequence with different defined C-terminal flanking regions. The constructs differed at the two first C-terminal positions after the S8L epitope, so called P1’ and P2’. At these sites, all 20 amino acids were exchanged consecutively and tested for their influence on H-2Kb/S8L presentation on the cell surface of the Flp-In 293Kb cells. The detection of this complex was performed by immunostaining and flow cytometry. The prevailing assumption is that proteasomal cleavages are exclusively responsible for the generation of the final C-termini of CTL epitopes. Nevertheless, recent publications showed that TPPII (tripeptidyl peptidase II) is required for the generation of the correct C-terminus of the HLA-A3-restricted HIV epitope Nef(73-82). With this background, the dependence of the S8L generation on proteasomal cleavage of the designed constructs was characterized using proteasomal inhibitors. The results obtained indicate that it is crucial for proteasomal cleavage, which amino acid is flanking the C-terminus of an epitope. Furthermore, partially proteasome independent S8L generation from specific S8L-precursor peptides was observed. Hence, the possibility of other existing endo- or carboxy-peptidases in the cytosol that could be involved in the correct trimming of the C-terminus of antigenic peptides for MHC class I presentation was investigated, performing specific knockdowns and using inhibitors against the target peptidases. In parallel, a purification strategy to identify the novel peptidase was established. The purified peaks showing an endopeptidase activity were further analyzed by mass spectrometry and some potential peptidases (like e.g. Lon) were identified, which have to be further characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I major histocompatibility complex (MHC) molecules induce either accelerated rejection or prolonged survival of allografts, presumably because of the presence of immunogenic or tolerogenic epitopes, respectively. To explore the molecular basis of this phenomenon, three chimeric class I molecules were constructed by substituting the rat class I RT1.A$\sp{\rm a}$ sequences with the N-terminus of HLA-A2.1 (N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$), the $\alpha\sb1$ helix (h) with $\rm\alpha\sb{1h}\sp{u}$ sequences ( ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$) or the entire $\alpha\sb2$ domain (d) with $\rm\alpha\sb{2d}\sp{u}$ sequences ( ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$). Wild type (WT) and chimeric cDNAs were sequenced prior to transfection into Buffalo (BUF; RT1$\sp{\rm b}$) hepatoma cells. Stable transfectants were injected subcutaneously (s.c.) into different hosts 7 days prior to challenge with a heart allograft. In BUF hosts, chimeric ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ accelerated the rejection of Wistar Furth (WF; RT1$\sp{\rm u}$) heart allografts, but had no effect on the survival of ACI (RT1$\sp{\rm a}$) grafts. In contrast, the ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ (containing $\rm\alpha\sb{1d}\sp{a}$ sequences) immunized BUF recipients toward RT1$\sp{\rm a}$ grafts. In WF hosts, WT-RT1.A$\sp{\rm a}$ was a potent immunogen and accelerated ACI graft rejection, N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$ was less effective and ($\rm\alpha\sb{\rm 1h}\sp{u}\rbrack$-RT1.A$\sp{\rm a}$ was not immunogenic. Thus, dominant and subdominant epitopes inducing in vivo sensitization to cardiac allografts are present in the $\alpha\sb1$ helix and the N-terminus, respectively. The failure of ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants (containing recipient-type $\alpha\sb{\rm 2d}$ sequences) to sensitize WF hosts toward ACI (RT1$\sp{\rm a}$) grafts, despite the presence of donor-type immunogenic $\alpha\sb{\rm 1d}\sp{\rm a}$, suggests that "self-$\alpha\sb2$" sequences displayed on chimeric antigens interfere with immunogenicity. The ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants injected s.c. prolonged the survival of WF (RT1$\sp{\rm u}$) hearts in ACI (RT1$\sp{\rm a}$) recipients. Furthermore, intra-portal injection of extracts from ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$, but not WT-RT1.A$\sp{\rm a}$ or RT1.A$\sp{\rm u}$, in conjunction with a brief cyclosporine course rendered ACI hosts permanently and specifically tolerant to donor-type WF cardiac allografts. Thus, immunodominant allodeterminants are present in the $\alpha\sb1$, but not the $\alpha\sb2$, domain of rat class I MHC molecules. Furthermore, the $\rm\alpha\sb{1h}\sp{u}$ immunogenic epitopes trigger tolerogenic responses when flanked by host-type N-terminal$\sp{\rm a}$ and $\rm\alpha\sb{2d}\sp{a}$ sequences. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presentation of MHC class I (MHC-I)/peptide complexes by dendritic cells (DCs) is critical for the maintenance of central tolerance to self and for the regulation of cytotoxic T lymphocytes (CTL)-mediated adaptive immune responses against pathogens and cancer cells. Interestingly, several findings have suggested that the cytoplasmic tail of MHC class I plays a functional role in the regulation of CTL immune responses. For example, our previous studies demonstrated that exon 7-deleted MHC-I molecules not only showed extended DC cell surface half-lives but also induced significantly increased CTL responses to viral challange invivo. Although exon 7-deleted variant of MHC-I does not occur naturally in humans, the animal studies prompted us to examine whether exon 7-deleted MHC-I molecules could generate augmented CTL responses in a therapeutic DC-based vaccine setting. To examine the stimulatory capacity of exon 7-deleted MHC-I molecules, we generated a lentivirus-mediated gene transfer system to induce the expression of different MHC-I cytoplasmic tail isoforms in both mouse and human DCs. These DCs were then used as vaccines in a melanoma mouse tumor model and in a human invitro co-culture system. In this thesis, we show that DCs expressing exon 7-deleted MHC-I molecules, stimulated remarkably higher levels of T-cell cytokine production and significantly increased the proliferation of meanoma-specific (Pmel-1) T cells compared with DCs expressing wild type MHC-I. We also demonstrate that, in combination with adoptive transfer of Pmel-1 T-cell, DCs expressing exon 7-deleted Db molecules induced greater anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival as compared to DCs expressing wild-type Db molecules. Moreover, we also observed that human DCs expressing exon 7-deleted HLA-A2 molecules showed similarly augmented CTL stimulatory ability. Mechanistic studies suggest that exon 7-deleted MHC-I molecules showed impaired lateral membrane movement and extended cell surface half-lives within the DC/T-cell interface, leading to increased spatial availability of MHC-I/peptide complexes for recognition by CD8+ T cells. Collectively, these results suggesr that targeting exon 7 within the cytoplasmic tail of MHC-I molecules in DC vaccines has the potential to enhance CD8+ T cell stimulatory capacity and improve clinical outcomes in patients with cancer or viral infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologues of the human major histocompatibility complex (MHC) HLA-A, -B, -E, -F, and -G loci are present in all the Catarrhini (Old World primates, apes, and humans), and some of their allelic lineages have survived several speciation events. Analysis of 26 MHC class I cDNAs from seven different genera of New World primates revealed that the Callitrichinae (tamarins and marmosets) are an exception to these rules of MHC stability. In gene trees of primate MHC class I genes, sequences from the Callitrichinae cluster in a genus-specific fashion, whereas in the other genera of New World primates, as in the Catarrhini, they cluster in a transgeneric way. The genus-specific clustering of the Callitrichinae cDNAs indicates that there is no orthology between MHC class I loci in genera of this phyletic group. Additionally, the Callitrichinae genera exhibit limited variability of their MHC class I genes, in contrast to the high variability displayed by all other primates. Each Callitrichinae genus, therefore, expresses its own set of MHC class I genes, suggesting that an unusually high rate of turnover of loci occurs in this subfamily. The limited variability of MHC class I genes in the Callitrichinae is likely the result of the recent origin of these loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.