893 resultados para High-sensitive C-reactive protein assay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) is a very aggressive cancer of the hematopoietic system. Chemotherapy and immunotherapeutical approaches including hematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) are the only curative options available. The beneficial graft-versus-leukemia (GVL) effect of cellular immunotherapy is mostly mediated by donor-derived CD8+ T lymphocytes that recognize minor histocompatibility antigens (mHags) and leukemia-associated antigens (LAAs) presented on the surface of AML blasts (Falkenburg et al. 2008; Kolb 2008). A main complication is graft-versus-host disease (GVHD) that can be induced when cytotoxic T lymphocytes (CTLs) recognize broadly expressed antigens. To reduce the risk of GVHD, specific allogeneic T-cell therapy inducing selective GVL responses could be an option (Barrett & Le Blanc 2010; Parmar et al. 2011; Smits et al. 2011). This requires efficient in vitro strategies to generate AML-reactive T cells with an early differentiation phenotype as well as vigorous effector functions and humanized mouse models to analyze the anti-leukemic potential of adoptively transferred T cells in vivo. In this study, AML-reactive CTL clones and oligoclonal T-cell lines could be reliably generated from the naive subset of healthy HLA-class I-identical donors by stimulation with primary AML blasts in mini-mixed-lymphocyte / leukemia cultures (MLLCs) in eight different patient / donor pairs. These CTLs were promising candidates for cellular immunotherapy because of their relatively early differentiation phenotype and strong proliferative and lytic capabilities. The addition of the common γ-chain cytokine IL-21 to the stimulation protocol enabled more precursors to develop into potent leukemia-reactive CTLs, presumably by its beneficial effects on cell survival and antigen-specific proliferation during the first weeks of cultures. It also strengthened the early-stage phenotype. Three long-term cultured CTLs exemplarily transferred into leukemia-engrafted immunodeficient NSG mice mediated a significant reduction of the leukemic burden after a single transfusion. These results demonstrate that CTL clones with reactivity to patient-derived AML blasts can be isolated from the naive compartment of healthy donors and show potent anti-leukemic effects in vivo. The herein described allo-MLLC approach with in vitro “programmed” naive CTL precursors independent of a HSCT setting is a valuable alternative to the conventional method of isolating in vivo primed donor CTLs out of patients after transplantation (Kloosterboer et al. 2004; Warren et al. 2010). This would make leukemia-reactive CTLs already available at the time point of HSCT, when residual leukemia disease is minimal and the chances for complete leukemia eradication are high. Furthermore, leukemia-reactive CTLs effectively expanded by this in vitro protocol can be used as screening populations to identify novel candidate LAAs and mHags for antigen-specific immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meprin and , zinc metalloproteinases, play significant roles in inflammation, including inflammatory bowel disease (IBD), possibly by activating cytokines, like interleukin 1 , interleukin 18, or tumor growth factor . Although a number of potential activators for meprins are known, no endogenous inhibitors have been identified. In this work, we analyzed the inhibitory potential of human plasma and identified bovine fetuin-A as an endogenous meprin inhibitor with a K(i) (inhibition constant) of 4.2 × 10(-5) M for meprin and a K(i) of 1.1 × 10(-6) M meprin . This correlated with data obtained for a fetuin-A homologue from carp (nephrosin inhibitor) that revealed a potent meprin and inhibition (residual activities of 27 and 22%, respectively) at a carp fetuin concentration of 1.5 × 10(-6) M. Human fetuin-A is a negative acute phase protein involved in inflammatory diseases, thus being a potential physiological regulator of meprin activity. We report kinetic studies of fetuin-A with the proteolytic enzymes astacin, LAST, LAST_MAM, trypsin, and chymotrypsin, indeed demonstrating that fetuin-A is a broad-range protease inhibitor. Fetuin-A inhibition of meprin activity was 40 times weaker than that of meprin activity. Therefore, we tested cystatin C, a protein structurally closely related to fetuin-A. Indeed, cystatin C was an inhibitor for human meprin (K(i) = 8.5 × 10(-6) M) but, interestingly, not for meprin . Thus, the identification of fetuin-A and cystatin C as endogenous proteolytic regulators of meprin activity broadens our understanding of the proteolytic network in plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several members of the human kallikrein-related peptidase family, including KLK6, are up-regulated in ovarian cancer. High KLK6 mRNA or protein expression, measured by quantitative polymerase chain reaction and enzyme-linked immunoassay, respectively, was previously found to be associated with a shortened overall and progression-free survival (OS and PFS, respectively). In the present study, we aimed at analyzing KLK6 protein expression in ovarian cancer tissue by immunohistochemistry. Using a newly developed monospecific polyclonal antibody, KLK6 immunoexpression was initially evaluated in normal tissues. We observed strong staining in the brain and moderate staining in the kidney, liver, and ovary, whereas the pancreas and the skeletal muscle were unreactive, which is in line with previously published results. Next, both tumor cell- and stromal cell-associated KLK6 immunoexpression were analyzed in tumor tissue specimens of 118 ovarian cancer patients. In multivariate Cox regression analysis, only stromal cell-associated expression, besides the established clinical parameters FIGO stage and residual tumor mass, was found to be statistically significant for OS and PFS [high vs. low KLK6 expression; hazard ratio (HR), 1.92; p=0.017; HR, 1.80; p=0.042, respectively]. These results indicate that KLK6 expressed by stromal cells may considerably contribute to the aggressiveness of ovarian cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filaggrin loss-of-function mutations resulting in C-terminal protein truncations are strong predisposing factors in human atopic dermatitis (AD). To assess the possibility of similar truncations in canine AD, an exclusion strategy was designed on 16 control and 18 AD dogs of various breeds. Comparative immunofluorescence microscopy was performed with an antibody raised against the canine filaggrin C-terminus and a commercial N-terminal antibody. Concurrent with human AD-like features such as generalized NFKB activation and hyperproliferation, four distinctive filaggrin expression patterns were identified in non-lesional skin. It was found that 10/18 AD dogs exhibited an identical pattern for both antibodies with comparable (category I, 3/18) or reduced (category II, 7/18) expression to that of controls. In contrast, 4/18 dogs displayed aberrant large vesicles revealed by the C-terminal but not the N-terminal antibody (category III), while 4/18 showed a control-like N-terminal expression but lacked the C-terminal protein (category IV). The missing C-terminal filaggrin in category IV strongly points towards loss-of function mutations in 4/18 (22%) of all AD dogs analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The transcription factor C/EBPalpha controls differentiation and proliferation in normal granulopoiesis in a stage-specific manner. Loss of C/EBPalpha function in myeloid cells in vitro and in vivo leads to a block to myeloid differentiation similar to that which is observed in malignant cells from patients with acute myeloid leukemia. The finding of C/EBPalpha alterations in subgroups of acute myeloid leukemia patients suggests a direct link between critically decreased C/EBPalpha function and the development of the disorder. RECENT FINDINGS: Conditional mouse models provide direct evidence that loss of C/EBPalpha function leads to the accumulation of myeloid blasts in the bone marrow. Targeted disruption of the wild type C/EBPalpha protein, while conserving the dominant-negative 30 kDa isoform of C/EBPalpha, induces an AML-like disease in mice. In hematopoietic stem cells C/EBPalpha serves to limit cell self-renewal. Finally, C/EBPalpha function is disrupted at different levels in specific subgroups of acute myeloid leukemia patients. SUMMARY: There is evidence that impaired C/EBPalpha function contributes directly to the development of acute myeloid leukemia. Normal myeloid development and acute myeloid leukemia are now thought to reflect opposite sides of the same hematopoietic coin. Restoring C/EBPalpha function represents a promising target for novel therapeutic strategies in acute myeloid leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postoperative infections and cardiac events are the major morbidity factors after thoracic surgery and dominating causes of death. Therefore, a sensitive blood marker is needed for an early diagnosis of complications. Twenty-two patients admitted with lung cancer were enrolled in this study. Procalcitonin, brain natriuretic peptide, C-reactive peptide and interleukin-6 levels were recorded preoperatively and postoperatively on days 1-5. Laboratory values of patients with cardiac or infectious complications were compared to patients without complications. During postoperative course procalcitonin and brain natriuretic peptide levels elevated in all patients, but both had higher peak levels in patients with infectious or cardiac complication than without these complications. Interleukin-6 levels were increased on day one and showed a slower decrease in case of complications than without complications. In general, brain natriuretic peptide and procalcitonin levels are increased in the postoperative course after major pulmonary resection, but cardiac and infectious complications are associated with higher levels and a slower decrease than without complications. Interleukin-6 levels showed a slower decrease in patients with complications in the postoperative course than without complications. So the combination of procalcitonin, brain natriuretic peptide, and interleukin-6 seems to be useful for an optimized postoperative monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By applying high pressure freezing and freeze-substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2-5 mum in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine-rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high-pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron-transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS-PAGE of lysine-labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium-specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-Protein Interactions That Regulate Neurotransmitter Release from Retinal Ribbon Synapses Photoreceptors and bipolar cells in the retina form specialized chemical synapses called ribbon synapses. This type of synapse differs physiologically from “conventional” chemical synapses. While “conventional” synapses exocytose neurotransmitter-filled vesicles in an all-or-none fashion in response to an action potential, a retinal ribbon synapse can release neurotransmitter tonically (sustained) in response to graded changes in membrane potential or phasically (transient) in response to a large change in membrane potential. Synaptic vesicle exocytosis is a tightly controlled process involving many protein-protein interactions. Therefore, it is likely that the dissimilarity in the release properties of retinal ribbon synapses and conventional synapses is the result of molecular differences between the two synapse types. Consistent with this idea, previous studies have demonstrated that ribbon synapses in the retina do not contain the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system. In contrast, ribbon synapses of the mammalian retina contain the related isoform, syntaxin 3B. Given that SNARE proteins play an important role in neurotransmitter release in conventional synapses, the purpose of this study was to characterize syntaxin 3B in order to elucidate what role this protein plays in neurotransmitter release from retinal ribbon synapses. Using molecular and biochemical techniques, it was demonstrated that syntaxin 3B is a binding partner of several presynaptic proteins that play a important role in synaptic vesicle exocytosis from retinal ribbon synapses and it is an evolutionarily conserved protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 14-kDa outer membrane protein (OMP) was purified from Actinobacillus pleuro-pneumoniae serotype 2. The protein strongly reacts with sera from pigs experimentally or naturally infected with any of the 12 serotypes of A. pleuropneumoniae. The gene encoding this protein was isolated from a gene library of A. pleuropneumoniae serotype 2 reference strain by immunoscreening. Expression of the cloned gene in Escherichia coli revealed that the protein is also located in the outer membrane fraction of the recombinant host. DNA sequence analysis of the gene reveals high similarity of the protein's amino acid sequence to that of the E. coli peptidoglycan-associated lipoprotein PAL, to the Haemophilus influenzae OMP P6 and to related proteins of several other Gram-negative bacteria. We have therefore named the 14-kDa protein PalA, and its corresponding gene, palA. The 20 amino-terminal amino acid residues of PalA constitute a signal sequence characteristic of membrane lipoproteins of prokaryotes with a recognition site for the signal sequence peptidase II and a sorting signal for the final localization of the mature protein in the outer membrane. The DNA sequence upstream of palA contains an open reading frame which is highly similar to the E. coli tolB gene, indicating a gene cluster in A. pleuropneumoniae which is very similar to the E. coli tol locus. The palA gene is conserved and expressed in all A. pleuropneumoniae serotypes and in A. lignieresii. A very similar palA gene is present in A. suis and A. equuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular oxidative stress, associated with a variety of common cardiac diseases, is well recognized to affect the function of several key proteins involved in Ca2+ signaling and excitation-contraction coupling, which are known to be exquisitely sensitive to reactive oxygen species. These include the Ca2+ release channels of the sarcoplasmic reticulum (ryanodine receptors or RyR2s) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). Oxidation of RyR2s was found to increase the open probability of the channel, whereas CaMKII can be activated independent of Ca2+ through oxidation. Here, we investigated how oxidative stress affects RyR2 function and SR Ca2+ signaling in situ, by analyzing Ca2+ sparks in permeabilized mouse cardiomyocytes under a broad range of oxidative conditions. The results show that with increasing oxidative stress Ca2+ spark duration is prolonged. In addition, long and very long-lasting (up to hundreds of milliseconds) localized Ca2+ release events started to appear, eventually leading to sarcoplasmic reticulum (SR) Ca2+ depletion. These changes of release duration could be prevented by the CaMKII inhibitor KN93 and did not occur in mice lacking the CaMKII-specific S2814 phosphorylation site on RyR2. The appearance of long-lasting Ca2+ release events was paralleled by an increase of RyR2 oxidation, but also by RyR-S2814 phosphorylation, and by CaMKII oxidation. Our results suggest that in a strongly oxidative environment oxidation-dependent activation of CaMKII leads to RyR2 phosphorylation and thereby contributes to the massive prolongation of SR Ca2+ release events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Chronic hepatitis C infection is a global disease with 160 million people infected worldwide. Until recently, therapy was characterized by long duration, suboptimal success rates and significant adverse drug reactions. The development of direct-acting antivirals initiated a dramatic change in the treatment of hepatitis C. AREAS COVERED: This review covers the development of the novel NS5A inhibitor ombitasvir (ABT-267) and its clinical evaluation in Phase I to III trials as monotherapy and in combination with the NS3/4A inhibitor ABT-450/r and the non-nucleoside NS5B inhibitor dasabuvir (ABT-333) ± ribavirin. EXPERT OPINION: Ombitasvir (ABT-267) is a potent inhibitor of the hepatitis C virus protein NS5A, has favorable pharmacokinetic characteristics and is active in the picomolar range against genotype 1 - 6. In patients with genotype 1 and 4, 12-week combination treatment with ombitasvir, dasabuvir and ABT-450/r plus ribavirin was highly effective and resulted in 12-week sustained virological response rates higher than 95% in treatment-naöve and treatment-experienced patients. In liver transplant recipients with genotype 1 hepatitis C, success rates in the same range can be expected after 24 weeks of treatment according to preliminary trial results. Genotype 1a patients with compensated cirrhosis who were prior nonresponders benefit from a treatment duration of 24 weeks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

valois (vls) was identified as a posterior group gene in the initial screens for Drosophila maternal-effect lethal mutations. Despite its early genetic identification, it has not been characterized at the molecular level until now. We show that vls encodes a divergent WD domain protein and that the three available EMS-induced point mutations cause premature stop codons in the vls ORF. We have generated a null allele that has a stronger phenotype than the EMS mutants. The vlsnull mutant shows that vls+ is required for high levels of Oskar protein to accumulate during oogenesis, for normal posterior localization of Oskar in later stages of oogenesis and for posterior localization of the Vasa protein during the entire process of pole plasm assembly. There is no evidence for vls being dependent on an upstream factor of the posterior pathway, suggesting that Valois protein (Vls) instead acts as a co-factor in the process. Based on the structure of Vls, the function of similar proteins in different systems and our phenotypic analysis, it seems likely that vls may promote posterior patterning by facilitating interactions between different molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ephrin-B/EphB family proteins are implicated in bidirectional signaling and were initially defined through the function of their ectodomain sequences in activating EphB receptor tyrosine kinases. Ephrin-B1-3 are transmembrane proteins sharing highly conserved C-terminal cytoplasmic sequences. Here we use a soluble EphB1 ectodomain fusion protein (EphB1/Fc) to demonstrate that ephrin-B1 transduces signals that regulate cell attachment and migration. EphB1/Fc induced endothelial ephrin-B1 tyrosine phosphorylation, migration and integrin-mediated (alpha(v)beta(3) and alpha(5)beta(1)) attachment and promoted neovascularization, in vivo, in a mouse corneal micropocket assay. Activation of ephrin-B1 by EphB1/Fc induced phosphorylation of p46 JNK but not ERK-1/2 or p38 MAPkinases. By contrast, mutant ephrin-B1s bearing either a cytoplasmic deletion (ephrin-B1DeltaCy) or a deletion of four C-terminal amino acids (ephrin-B1DeltaPDZbd) fail to activate p46 JNK. Transient expression of intact ephin-B1 conferred EphB1/Fc migration responses on CHO cells, whereas the ephrin-B1DeltaCy and ephrin-B1DeltaPDZbd mutants were inactive. Thus ephrin-B1 transduces 'outside-in' signals through C-terminal protein interactions that affect integrin-mediated attachment and migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of CD47 to signal regulatory protein alpha (SIRPα), an inhibitory receptor, negatively regulates phagocytosis. In acute myeloid leukemia (AML), CD47 is overexpressed on peripheral blasts and leukemia stem cells and inversely correlates with survival. Aim of the study was to investigate the correlation between CD47 protein expression by immunohistochemistry (IHC) in a bone marrow (BM) tissue microarray (TMA) and clinical outcome in AML patients. CD47 staining on BM leukemia blasts was scored semi-quantitatively and correlated with clinical parameters and known prognostic factors in AML. Low (scores 0-2) and high (score 3) CD47 protein expression were observed in 75% and 25% of AML patients. CD47 expression significantly correlated with percentage BM blast infiltration and peripheral blood blasts. Moreover, high CD47 expression was associated with nucleophosmin (NPM1) gene mutations. In contrast, CD47 expression did not significantly correlate with overall or progression free survival or response to therapy. In summary, a BM TMA permits rapid and reproducible semi-quantitative analysis of CD47 protein expression by IHC. While CD47 expression on circulating AML blasts has been shown to be a negative prognostic marker for a very defined population of AML patients with NK AML, CD47 expression on AML BM blasts is not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Familial acute myeloid leukemia is rare and linked to germline mutations in RUNX1, GATA2 or CCAAT/enhancer binding protein-α (CEBPA). We re-evaluated a large family with acute myeloid leukemia originally seen at NIH in 1969. We utilized whole-exome sequencing to study this family, and conducted in silico bioinformatics analysis, protein structural modeling and laboratory experiments to assess the impact of the identified CEBPA Q311P mutation. Unlike most previously identified germline mutations in CEBPA, which were N-terminal frameshift mutations, we identified a novel Q311P variant that was located in the C-terminal bZip domain of C/EBPα. Protein structural modeling suggested that the Q311P mutation alters the ability of the CEBPA dimer to bind DNA. Electrophoretic mobility shift assays showed that the Q311P mutant had attenuated binding to DNA, as predicted by the protein modeling. Consistent with these findings, we found that the Q311P mutation has reduced transactivation, consistent with a loss-of-function mutation. From 45 years of follow-up, we observed incomplete penetrance (46%) of CEBPA Q311P. This study of a large multi-generational pedigree reveals that a germline mutation in the C-terminal bZip domain can alter the ability of C/EBP-α to bind DNA and reduces transactivation, leading to acute myeloid leukemia.