8 resultados para Hemopoiesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BDF(,1) mice received a single intravenous injection of glucan, a potent immunomodulating agent, and at various times thereafter the proliferation of pluripotent (CFU-S), committed granulocyte-macrophage (GM-CFC) and committed B-lymphocyte (BL-CFC) hemopoietic stem cells was measured in the bo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemopoietic progenitor cells express clustered homeobox (Hox) genes in a pattern characteristic of their lineage and stage of differentiation. In general, HOX expression tends to be higher in more primitive and lower in lineage-committed cells. These trends have led to the hypothesis that self-renewal of hemopoietic stem/progenitor cells is HOX-dependent and that dysregulated HOX expression underlies maintenance of the leukemia-initiating cell. Gene expression profile studies support this hypothesis and specifically highlight the importance of the HOXA cluster in hemopoiesis and leukemogenesis. Within this cluster HOXA6 and HOXA9 are highly expressed in patients with acute myeloid leukemia and form part of the "Hox code" identified in murine models of this disease. We have examined endogenous expression of Hoxa6 and Hoxa9 in purified primary progenitors as well as four growth factor-dependent cell lines FDCP-Mix, EML, 32Dcl3, and Ba/F3, representative of early multipotential and later committed precursor cells respectively. Hoxa6 was consistently higher expressed than Hoxa9, preferentially expressed in primitive cells and was both growth-factor and cell-cycle regulated. Enforced overexpression of HOXA6 or HOXA9 in FDCP-Mix resulted in increased proliferation and colony formation but had negligible effect on differentiation. In both FDCP-Mix and the more committed Ba/F3 precursor cells overexpression of HOXA6 potentiated factor-independent proliferation. These findings demonstrate that Hoxa6 is directly involved in fundamental processes of hemopoietic progenitor cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is important to be able to assess the contribution of donor cells to the graft followmg bone marrow transplantation (BMT), as complete engraftment of marrow progenitors that can give rise to long term donor derived hemopoiesis may be important in long-term disease-free survival. The contribution of the donor marrow, both in terms of filling the marrow "space" created by the intense conditioning regimen and in its ability to mediate a graft versus leukemia effect may be assessed by studying the kinetics of the engraftment process. As BMT involves repopulation of the host hemopoietic system with donor cells, recipients of allogeneic marrow are referred to as hemopoietic chimeras. A donor chimera is an individual who exhibits complete donor hemopoiesis and we would imagine that donor chimertsm carries the best long-term prognosis. A patient who has both donor and recipient cells coexistmg in a stable fashion post-BMT without hematological evidence of relapse or graft rejection is referred to as a mixed chimera. Mixed chimerism may be a prelude to graft rejection or leukemic relapse; therefore, it is important to be able to monitor the presence of these cells in a precise manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many cytokines exert their biological effect through members of the hemopoietin receptor family. Using degenerate oligonucleotides to the common WSXWS motif, we have cloned from human hemopoietic cell cDNA libraries various forms of the receptor that was recently shown to bind the obesity hormone, leptin. mRNAs encoding long and short forms of the human leptin receptor were found to be coexpressed in a range of human and murine hemopoietic organs, and a subset of cells from these tissues bound leptin at the cell surface. Ectopic expression in murine Ba/F3 and M1 cell lines revealed that the long, but not the short, form of the leptin receptor can signal proliferation and differentiation, respectively. In cultures of murine or human marrow cells, human leptin exhibited no capacity to stimulate cell survival or proliferation, but it enhanced cytokine production and phagocytosis of Leishmania parasites by murine peritoneal macrophages. Our data provide evidence that, in addition to its role in fat regulation, leptin may also be able to regulate aspects of hemopoiesis and macrophage function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stem cell leukemia (SCL) gene encodes a tissue-specific basic helix–loop–helix (bHLH) protein with a pivotal role in hemopoiesis and vasculogenesis. Several enhancers have been identified within the murine SCL locus that direct reporter gene expression to subdomains of the normal SCL expression pattern, and long-range sequence comparisons of the human and murine SCL loci have identified additional candidate enhancers. To facilitate the characterization of regulatory elements, we have sequenced and analyzed 33 kb of the SCL genomic locus from the pufferfish Fugu rubripes, a species with a highly compact genome. Although the pattern of SCL expression is highly conserved from mammals to teleost fish, the genes flanking pufferfish SCL were unrelated to those known to flank both avian and mammalian SCL genes. These data suggest that SCL regulatory elements are confined to the region between the upstream and downstream flanking genes, a region of 65 kb in human and 8.5 kb in pufferfish. Consistent with this hypothesis, the entire 33-kb pufferfish SCL locus directed appropriate expression to hemopoietic and neural tissue in transgenic zebrafish embryos, as did a 10.4-kb fragment containing the SCL gene and extending to the 5′ and 3′ flanking genes. These results demonstrate the power of combining the compact genome of the pufferfish with the advantages that zebrafish provide for studies of gene regulation during development. Furthermore, the pufferfish SCL locus provides a powerful tool for the manipulation of hemopoiesis and vasculogenesis in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the CD34 antigen is widely used in the identification and purification of hemopoietic stem and progenitor cells, its function within hemopoiesis is unknown. We have investigated this issue by ectopically expressing human (hu) CD34 on the surface of murine hemopoietic cells. Forced expression of hu-CD34 in the thymocytes of transgenic mice did not appear to affect the development, maturation, or distribution of murine T cells but did significantly increase their ability to adhere to bone marrow stromal layers of human but not mouse origin. Ectopic expression of hu-CD34 on murine 416B cells, a multipotential progenitor that expresses murine CD34, yielded similar results. In both cases hu-CD34-dependent adhesion was enhanced by molecular engagement of the hu-CD34 protein using anti-CD34 antibodies. These results provide evidence that CD34 promotes the adhesive interactions of hemopoietic cells with the stromal microenvironment of the bone marrow thereby implicating CD34 in regulation and compartmentalization of stem cells. We propose that CD34 regulates these processes in part via an indirect mechanism, signaling changes in cellular adhesion in response to molecular recognition of an as yet unidentified stromal CD34 counterreceptor or ligand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective lodgement or homing of transplanted hemopoietic stem cells in the recipient's bone marrow (BM) is a critical step in the establishment of long-term hemopoiesis after BM transplantation. However, despite its biologic and clinical significance, little is understood about the process of homing. In the present study, we have concentrated on the initial stages of homing and explored the functional role in vivo of some of the adhesion pathways previously found to mediate in vitro adhesion of hemopoietic cells to cultured BM stroma. We have found that homing of murine hemopoietic progenitors of the BM of lethally irradiated recipients at 3 h after transplant was significantly reduced after pretreatment of the donor cells with an antibody to the integrin very late antigen 4 (VLA4). This inhibition of marrow homing was accompanied by an increase in hemopoietic progenitors circulating in the blood and an increased uptake of these progenitors by the spleen. Similar results were obtained by treatment of the recipients with an antibody to vascular cell adhesion molecule 1 (VCAM-1), a ligand for VLA4. Furthermore, we showed that administration of the same antibodies (anti-VLA4 or anti-VCAM-1) to normal animals causes mobilization of hemopoietic progenitors into blood. These data suggest that hemopoietic cell lodgement in the BM is a regulatable process and can be influenced by VLA4/VCAM-1 adhesion pathway. Although additional molecular pathways are not excluded and may be likely, our data establish VCAM-1 as a BM endothelial addressin, analogous to the role that mucosal addressin cell adhesion molecule (MAdCAM) plays in lymphocyte homing. Whether splenic uptake of hemopoietic progenitors is passive or controlled through different mechanisms remains to be clarified. In addition, we provide experimental evidence that homing and mobilization are related phenomena involving, at least partly, similar molecular pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A desnutrição proteica (DP) pode ocasionar alterações na matriz extracelular (MEC) de diferentes órgãos e tecidos, inclusive o hematopoético, com comprometimento funcional. Estudos do nosso laboratório demonstraram, em modelo murino de DP, aumento da expressão proteica de fibronectina (FN) no estroma medular ósseo in vivo, principalmente na região subendosteal (local de fixação da célula tronco progenitora hemopoética). Já in vitro, no estroma medular ósseo, observou-se tanto o aumento quanto a diminuição de FN e a presença de suas isoformas. Essas alterações de FN parecem estar envolvidas com a hipoplasia da medula óssea (MO) em camundongos desnutridos. As modificações quantitativas de FN podem ser devidas: (i) à ação das metaloproteinases de matriz (MMP) responsáveis pela degradação das proteínas da MEC; (ii) aos inibidores de metaloproteinases (TIMP) que regulam a degradação da MEC; (iii) às alterações transcricionais, reguladas pela via de AKT/mTOR, que controla os splicing alternativos na FN, resultando em isoformas dessa proteína; (iv) a processos pós-transcricionais modulados por LC3, que aumenta a tradução do RNAm de FN. Assim, o objetivo deste estudo foi elucidar os mecanismos que alteram o turnover de FN no estroma medular ósseo em modelo murino de DP. Utilizamos camundongos, C57BL/6J machos, adultos, separados em dois grupos: controle e desnutrido, alimentados, ad libitum, com ração contendo 12% e 2% de proteína, respectivamente. Após cinco semanas de indução à desnutrição os camundongos foram eutanasiados, e coletado o material biológico. Avaliamos: o estado nutricional, o hematológico, a histologia da MO femoral bem como a determinação imunohistoquímica da FN, MMP-2 e MMP-9, determinação da expressão de FN e suas isoformas em células totais da MO, o estabelecimento do estroma medular ósseo in vitro, por 28 e 35 dias de cultivo. A partir das culturas foram avaliadas a expressão de RNAm de FN e suas isoformas, MMP-2, MMP-9, TIMP-1, TIMP-2, AKT, mTOR e LC3α e β, quantificação de MMP-2, MMP-9, TIMP-1, TIMP-2,TNFα, TGFβ e IL-1β e determinação de LC3β e proteínas da via de AKT/mTOR. Não observamos alterações na expressão do RNAm de FN e suas isoformas ex vivo e in vitro, mas um aumento da deposição de FN na MO.Também não observamos modificações na imunolocalização de MMP-2 e MMP-9 na MO e na atividade dessas proteínas no sobrenadante de culturas de células estromais in vitro, mas houve aumento da expressão do RNAm de MMP-9 em 28 dias de cultivo. Não detectamos alterações na expressão de RNAm e na concentração de TIMP-1 e TIMP-2 no sobrenadante das culturas. Houve redução significativa de TNFα e TGFβ no sobrenadante das culturas de 28 dias. Observamos aumento da expressão do RNAm de mTOR em culturas de 28 dias e LC3α e LC3β em 35 dias de células estromais. Encontramos menor fosforilação de PI3K, AKT, PTEN, mTOR e mTOR total e aumento de LC3β em culturas de 28 dias, mas redução de LC3β em 35 dias. Em função dos dados inferimos que a DP conduz a alterações da FN que não estão relacionadas à ação de MMPs e TIMPs e sim a modificações de LC3β e da via de AKT/mTOR.