998 resultados para Hemoglobin D
Resumo:
采用一种新型的稀土配位化合物Y(CF3COO)3/Al(i-Bu)3为催化剂,制备了不同组成的ε-己内酯/d,l-丙交酯共聚物,并用GPC、NMR和DSC表征了共聚物的结构.结果表明通过改变初始投料中两种单体的比例,可以调节共聚酯的化学结构,而共聚物的形态则受结构影响很大.
Resumo:
A direct, quasi-reversible electrochemical reaction of horse heart hemoglobin without further purification was obtained for the first time at the indium oxide electrode when oxygen was removed from the solution and hemoglobin molecules. It was found that removing oxygen from the solution and hemoglobin molecules is an important factor for obtaining the quasi-reversible electrochemical reaction of hemoglobin.
Resumo:
The structural characterization of folded and unfolded haemoglobin has been performed by scanning tunnelling microscopy (STM) for the first time. STM images show an oval-shaped pattern for the folded structure of this protein, and moreover two dimers consisting of one haemoglobin molecule can be clearly discerned. The dimensions of a folded molecule were determined as 6.4 x 5.4 x 0.7 nm(3), which are in good agreement with the known size obtained from X-ray analysis. We have found that unfolding of haemoglobin molecules on the surface of highly oriented pyrolytic graphite (HOPG) can be achieved by electrochemical deposition. The STM analysis indicates clearly that the tertiary structure of the protein was lost by electrochemical deposition, and most of the haemoglobin molecules were almost fully extended and exhibited a twisted rope-like or a rod-like aggregated structure. Our investigation demonstrates the capability of the electrochemical method in denaturing this redox protein and in preparing stable biological samples for use in STM imaging.
Resumo:
The electrochemically polymerized azure A film electrode is reported. The resulting film on a platinum electrode surface was analyzed with electron spectroscopy for chemical analysis (ESCA). The heterogeneous electron transfer processes of hemoglobin at the polymerized azure A film electrode have been investigated using in situ UV-visible spectroelectrochemistry. The formal potential (E-degrees') and electron transfer number (n) of hemoglobin were calculated as E = 0.088 V versus NHE (standard deviation +/- 0.5, N = 4) and n = 1.8 (standard deviation +/- 0.5, N = 4). Exhaustive reduction and oxidation electrolysis are achieved in 80 and 380 seconds, respectively, during a potential step between -0.3 and +0.3 V. A formal heterogeneous electron-transfer rate constant (k(sh)) of 3.54(+/- 0.12) X 10(-6) cm/s and a transfer coefficient (alpha) of 0.28(+/- 0.01) were obtained by cyclic voltabsorptometry, which indicated that the poly-azure A film electrode is able to catalyze the direct reduction and oxidation of hemoglobin.
Resumo:
用一种全氟代磺酸酯阳离子交换树酯(East-man AQ-55),将D-氨基酸氧化酶(DAAO),辣根过氧化物酶(HRP)以及1,1′-二(α-羟基乙基)二茂铁(BHFc)同时包埋在玻碳电极(GCE)表面,制成双酶D-氨基酸电流式传感器。电极的工作电位为+0.18V(vs.SCE)响应时间小于50s。对于D-丙氨酸来说,测定的最适宜pH为7.8,测定的线性范围为0.05~0.75mmol/L该电极具有良好的重现性,可以连续使用200次。
Resumo:
Thionine-containing chemically modified electrode (cme) was constructed with glassy carbon substrate by potential sweep oxidation, electrodeposition and adsorption procedures, and electrocatalytic reduction of hemoglobin was carried out and characterized at the cme under batch and flow conditions. Comparison of the catalytic response toward hemoglobir obtained at the cme was made mainly in terms of the potential dependence, the detectability and long-term stability. When used in flow injection analysis (FIA) experiments with the detector monitored at a constant potential applied at -0.35 V vs sce, detection limit of 0.15-1.5 pmol level of hemoglobin injected was achieved at the cme, with linear response range over 2 orders of magnitude. All the cme s retained more than 70% of their initial hemoglobin response level over 8 h of continuous service in the flow-through system.