973 resultados para Heat-shock


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor κB ligand (BANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence causedby 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants are sessile organisms that have evolved a variety of mechanisms to maintain their cellular homeostasis under stressful environmental conditions. Survival of plants under abiotic stress conditions requires specialized group of heat shock protein machinery, belonging to Hsp70:J-protein family. These heat shock proteins are most ubiquitous types of chaperone machineries involved in diverse cellular processes including protein folding, translocation across cell membranes, and protein degradation. They play a crucial role in maintaining the protein homeostasis by reestablishing functional native conformations under environmental stress conditions, thus providing protection to the cell. J-proteins are co-chaperones of Hsp70 machine, which play a critical role by stimulating Hsp70s ATPase activity, thereby stabilizing its interaction with client proteins. Using genome-wide analysis of Arabidopsis thaliana, here we have outlined identification and systematic classification of J-protein co-chaperones which are key regulators of Hsp70s function. In comparison with Saccharomyces cerevisiae model system, a comprehensive domain structural organization, cellular localization, and functional diversity of A. thaliana J-proteins have also been summarized. Electronic supplementary material The online version of this article (doi:10.1007/s10142-009-0132-0) contains supplementary material, which is available to authorized users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal sensitivity and heat shock response of the different races of the mulberry silkworm Bombyx mori have been analysed. The multivoltine race, strains C. Nichi and Pure Mysore showed better survival rates than the bivoltine race, strain NB4D2 exposed to 41 degrees C and above. In general, the fifth instar larvae and the pupae exhibited maximum tolerance compared to the early larval instars, adult moths or the eggs. Exposure up to 39 degrees C for 1 or 2 h was tolerated equally whereas temperatures above 43 degrees C proved to be lethal for all. Treatment of larvae at 41 degrees C for Ih resulted in a variety of physiological alterations including increased heart beat rates, differential haemocyte counts, enlargement of granulocytes and the presence of additional protein species in the tissues and haemolymph. The appearance of a 93 kDa protein in the haemolymph, fat bodies and cuticle, following the heat shocking of larvae in vivo was a characteristic feature in all the three strains examined although the kinetics of their appearance itself was different. In haemolymph, the protein appeared immediately in response to heat shock in C. Nichi reaching the maximal levels in 2-4 h whereas its presence was noticeable only after 2-4 h recovery time in Pure Mysore and bivoltine races. The fat body from both C. Nichi and NB4D2 showed the presence of 93 kDa, 89 kDa and 70 kDa proteins on heat shock. The haemocytes, on the other hand, expressed only a 70 kDa protein consequent to heat shock. The 93 kDa protein in the haemolymph, therefore could have arisen from some other tissue, possibly the fat body. The 93 kDa protein was detected after heat shock in pupae and adult moths as well, although the presence of an additional (56 kDa) protein was also apparent in the adults. The presence of 46 kDa and 28 kDa bands in addition to the 93 kDa band in the cuticular proteins immediately following heat shock was clearly discernible. The 70 kDa band did not show much changes in the cuticular proteins on heat shock. In contrast to the changes in protein profiles seen in tissues and haemolymph following heat shock in vivo, the heat treatment of isolated fat body or haemolymph in vitro resulted in protein degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. Experimental design: We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Results: Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. Conclusions: In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can ``make or break'' mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Hypothesis: Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Methods: Six healthy volunteers were subjected to heat stress at 55degreesC in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Conclusions: Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.