941 resultados para HYBRID APPROACH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a novel hybrid approach is presented that uses a combination of both time domain and frequency domain solution strategies to predict the power distribution within a lossy medium loaded within a waveguide. The problem of determining the electromagnetic fields evolving within the waveguide and the lossy medium is decoupled into two components, one for computing the fields in the waveguide including a coarse representation of the medium (the exterior problem) and one for a detailed resolution of the lossy medium (the interior problem). A previously documented cell-centred Maxwell’s equations numerical solver can be used to resolve the exterior problem accurately in the time domain. Thereafter the discrete Fourier transform can be applied to the computed field data around the interface of the medium to estimate the frequency domain boundary condition in-formation that is needed for closure of the interior problem. Since only the electric fields are required to compute the power distribution generated within the lossy medium, the interior problem can be resolved efficiently using the Helmholtz equation. A consistent cell-centred finite-volume method is then used to discretise this equation on a fine mesh and the underlying large, sparse, complex matrix system is solved for the required electric field using the iterative Krylov subspace based GMRES iterative solver. It will be shown that the hybrid solution methodology works well when a single frequency is considered in the evaluation of the Helmholtz equation in a single mode waveguide. A restriction of the scheme is that the material needs to be sufficiently lossy, so that any penetrating waves in the material are absorbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, everyone can effortlessly access a range of information on the World Wide Web (WWW). As information resources on the web continue to grow tremendously, it becomes progressively more difficult to meet high expectations of users and find relevant information. Although existing search engine technologies can find valuable information, however, they suffer from the problems of information overload and information mismatch. This paper presents a hybrid Web Information Retrieval approach allowing personalised search using ontology, user profile and collaborative filtering. This approach finds the context of user query with least user’s involvement, using ontology. Simultaneously, this approach uses time-based automatic user profile updating with user’s changing behaviour. Subsequently, this approach uses recommendations from similar users using collaborative filtering technique. The proposed method is evaluated with the FIRE 2010 dataset and manually generated dataset. Empirical analysis reveals that Precision, Recall and F-Score of most of the queries for many users are improved with proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper present an efficient method using system state sampling technique in Monte Carlo simulation for reliability evaluation of multi-area power systems, at Hierarchical Level One (HLI). System state sampling is one of the common methods used in Monte Carlo simulation. The cpu time and memory requirement can be a problem, using this method. Combination of analytical and Monte Carlo method known as Hybrid method, as presented in this paper, can enhance the efficiency of the solution. Incorporation of load model in this study can be utilised either by sampling or enumeration. Both cases are examined in this paper, by application of the methods on Roy Billinton Test System(RBTS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the multicast stream authentication problem when an opponent can drop, reorder and inject data packets into the communication channel. In this context, bandwidth limitation and fast authentication are the core concerns. Therefore any authentication scheme is to reduce as much as possible the packet overhead and the time spent at the receiver to check the authenticity of collected elements. Recently, Tartary and Wang developed a provably secure protocol with small packet overhead and a reduced number of signature verifications to be performed at the receiver. In this paper, we propose an hybrid scheme based on Tartary and Wang’s approach and Merkle hash trees. Our construction will exhibit a smaller overhead and a much faster processing at the receiver making it even more suitable for multicast than the earlier approach. As Tartary and Wang’s protocol, our construction is provably secure and allows the total recovery of the data stream despite erasures and injections occurred during transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheel bearings play a crucial role in the mobility of a vehicle by minimizing motive power loss and providing stability in cornering maneuvers. Detailed engineering analysis of a wheel bearing subsystem under dynamic conditions poses enormous challenges due to the nonlinearity of the problem caused by multiple factional contacts between rotating and stationary parts and difficulties in prediction of dynamic loads that wheels are subject to. Commonly used design methodologies are based on equivalent static analysis of ball or roller bearings in which the latter elements may even be represented with springs. In the present study, an advanced hybrid approach is suggested for realistic dynamic analysis of wheel bearings by combining lumped parameter and finite element modeling techniques. A validated lumped parameter representation serves as an efficient tool for the prediction of radial wheel load due to ground reaction which is then used in detailed finite element analysis that automatically accounts for contact forces in an explicit formulation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUELCON is an expert system for optimized refueling design in nuclear engineering. This task is crucial for keeping down operating costs at a plant without compromising safety. FUELCON proposes sets of alternative configurations of allocation of fuel assemblies that are each positioned in the planar grid of a horizontal section of a reactor core. Results are simulated, and an expert user can also use FUELCON to revise rulesets and improve on his or her heuristics. The successful completion of FUELCON led this research team into undertaking a panoply of sequel projects, of which we provide a meta-architectural comparative formal discussion. In this paper, we demonstrate a novel adaptive technique that learns the optimal allocation heuristic for the various cores. The algorithm is a hybrid of a fine-grained neural network and symbolic computation components. This hybrid architecture is sensitive enough to learn the particular characteristics of the ‘in-core fuel management problem’ at hand, and is powerful enough to use this information fully to automatically revise heuristics, thus improving upon those provided by a human expert.