944 resultados para HYBRID GENETIC ALGORITHM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a Genetic Algorithms approach to a manpower-scheduling problem arising at a major UK hospital. Although Genetic Algorithms have been successfully used for similar problems in the past, they always had to overcome the limitations of the classical Genetic Algorithms paradigm in handling the conflict between objectives and constraints. The approach taken here is to use an indirect coding based on permutations of the nurses, and a heuristic decoder that builds schedules from these permutations. Computational experiments based on 52 weeks of live data are used to evaluate three different decoders with varying levels of intelligence, and four well-known crossover operators. Results are further enhanced by introducing a hybrid crossover operator and by making use of simple bounds to reduce the size of the solution space. The results reveal that the proposed algorithm is able to find high quality solutions and is both faster and more flexible than a recently published Tabu Search approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bandwidth-delay constrained least-cost multicast routing is a typical NP-complete problem. Although some swarm-based intelligent algorithms (e.g., genetic algorithm (GA)) are proposed to solve this problem, the shortcomings of local search affect the computational effectiveness. Taking the ability of building a robust network of Physarum network model (PN), a new hybrid algorithm, Physarum network-based genetic algorithm (named as PNGA), is proposed in this paper. In PNGA, an updating strategy based on PN is used for improving the crossover operator of traditional GA, in which the same parts of parent chromosomes are reserved and the new offspring by the Physarum network model is generated. In order to estimate the effectiveness of our proposed optimized strategy, some typical genetic algorithms and the proposed PNGA are compared for solving multicast routing. The experiments show that PNGA has more efficient than original GA. More importantly, the PNGA is more robustness that is very important for solving the multicast routing problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mobile ad hoc network is a kind of popular self-configuring network, in which multicast routing under the quality of service constraints, is a significant challenge. Many researchers have proved that such problem can be formulated as a NP-complete problem and proposed some swarm-based intelligent algorithms to solve the optimal solution, such as the genetic algorithm (GA), bees algorithm. However, a lower efficiency of local search ability and weak robustness still limit the computational effectiveness. Aiming to those shortcomings, a new hybrid algorithm inspired by the self-organization of Physarum, is proposed in this paper. In our algorithm, an updating scheme based on Physarum network model (PM) is used for improving the crossover operator of traditional GAs, in which the same parts of parent chromosomes are reserved and the new offspring by the PM is generated. In order to estimate the effectiveness of our proposed optimized scheme, some typical genetic algorithms and their updating algorithms (PMGAs) are compared for solving the multicast routing on four different datasets. The simulation experiments show that PMGAs are more efficient than original GAs. More importantly, the PMGAs are more robustness that is very important for solving the multicast routing problem. Moreover, a series of parameter analyses is used to find a set of better setting for realizing the maximal efficiency of our algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new penalty-based genetic algorithm for the multi-source and multi-sink minimum vertex cut problem, and illustrate the algorithm’s usefulness with two real-world applications. It is proved in this paper that the genetic algorithm always produces a feasible solution by exploiting some domain-specific knowledge. The genetic algorithm has been implemented on the example applications and evaluated to show how well it scales as the problem size increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the filed of semantic grid, QoS-based Web service scheduling for workflow optimization is an important problem.However, in semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the scheduling consider not only quality properties of Web services, but also inter service dependencies which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address scheduling optimization problems in workflow applications in the presence of domain constraints and inter service dependencies. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Web service based systems, new value-added Web services can be constructed by integrating existing Web services. A Web service may have many implementations, which are functionally identical, but have different Quality of Service (QoS) attributes, such as response time, price, reputation, reliability, availability and so on. Thus, a significant research problem in Web service composition is how to select an implementation for each of the component Web services so that the overall QoS of the composite Web service is optimal. This is so called QoS-aware Web service composition problem. In some composite Web services there are some dependencies and conflicts between the Web service implementations. However, existing approaches cannot handle the constraints. This paper tackles the QoS-aware Web service composition problem with inter service dependencies and conflicts using a penalty-based genetic algorithm (GA). Experimental results demonstrate the effectiveness and the scalability of the penalty-based GA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of semantic grid, QoS-based Web service composition is an important problem. In semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the composition consider not only QoS properties of Web services, but also inter service dependencies and conflicts which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address the Web service composition optimization problem in the presence of domain constraints and inter service dependencies and conflicts. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications’ placement methods in data centres are not concerned with the placement of the component’s data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud provider’s servers. Experimental results demonstrate the feasibility and the scalability of the GA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite web services comprise several component web services. When a composite web service is executed centrally, a single web service engine is responsible for coordinating the execution of the components, which may create a bottleneck and degrade the overall throughput of the composite service when there are a large number of service requests. Potentially this problem can be handled by decentralizing execution of the composite web service, but this raises the issue of how to partition a composite service into groups of component services such that each group can be orchestrated by its own execution engine while ensuring acceptable overall throughput of the composite service. Here we present a novel penalty-based genetic algorithm to solve the composite web service partitioning problem. Empirical results show that our new algorithm outperforms existing heuristic-based solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the optimization of conductor size and the voltage regulator location & magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.