983 resultados para HUMAN DENTAL-PULP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental pulp cells (DPCs) have shown promising potential in dental tissue repair and regeneration. However, during in vitro culture, these cells undergo replicative senescence and result in significant alteration in cell proliferation and differentiation. Recently, the transcription factors of Oct-4, Sox2, c-Myc, and Klf4 have been reported to play a regulatory role in the stem cell self-renewal process, namely cell reprogramming. Therefore, it is interesting to know whether the replicative senescence during the culture of dental pulp cells is related to the diminishing of the expression of these transcription factors. In this study, we investigated the expression of the reprogramming markers Oct-4, Sox2, and c-Myc in the in vitro explant cultured dental pulp tissues and explant cultured dental pulp cells (DPCs) at various passages by immunofluorescence staining and real-time polymerase chain reaction analysis. Our results demonstrated that Oct-4, Sox2, and c-Myc translocated from nucleus in the first 2 passages to cytoplasm after the third passage in explant cultured DPCs. The mRNA expression of Oct-4, Sox2, and c-Myc elevated significantly over the first 2 passages, peaked at second passage (P < .05), and then decreased along the number of passages afterwards (P < .05). For the first time we demonstrated that the expression of reprogramming markers Oct-4, Sox2, and c-Myc was detectable in the early passaged DPCs, and the sequential loss of these markers in the nucleus during DPC cultures might be related to the cell fate of dental pulp derived cells during the long-term in vitro cultivation under current culture conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of neuropeptides in complex biological tissue samples requires efficient and appropriate extraction methods so that immunoreactivity is retained for subsequent radioimmunoassay detection. Since neuropeptides differ in their molecular mass, charge and hydrophobicity, no single method will suffice for the optimal extraction of various neuropeptides. In this study, dental pulp tissue was obtained from 30 human non-carious teeth. Of the three different neuropeptide extraction methods employed, boiling in acetic acid in the presence of protease inhibitors yielded the highest levels of neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). High pressure liquid chromatography (HPLC) analysis of dental pulp tissue verified the authenticity of the neuropeptides extracted. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To quantitatively measure VIP levels and to qualitatively study the distribution of VIP fibres and demonstrate the presence of the VPAC1 receptor in human dental pulp from carious and non-carious adult human teeth. Design: Dental pulp samples were collected from non-carious, moderately carious and grossly carious adult human teeth. VIP levels were determined using radioimmunoassay. The distribution of VIP fibres was studied using immunohistochemistry. The VPAC1 receptor protein expression was determined by Western blotting. Results: VIP levels were found to be significantly elevated in the dental pulp of moderately carious compared with non-carious (p = 0.0032) or grossly carious teeth (p = 0.0029). The distribution of VIP fibres was similar in non-carious and carious teeth, except that nerve bundles appeared thicker in the pulp samples from carious compared with non-carious teeth. Western blotting indicated that the VPAC1 receptor proteins were detected in similar levels in pooled dental pulp samples from both carious and non-carious teeth. Conclusion: It is concluded that quantitative changes in the levels of VIP in human dental pulp during the caries process and the expression of VPAC1 receptor proteins in membrane extracts from carious and non-carious teeth suggests a role for VIP in modulating pulpal health and disease. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To determine the distribution of the NPY Y1 receptor in carious and noncarious human dental pulp tissue using immunohistochemistry. A subsidiary aim was to confirm the presence of the NPY Y1 protein product in membrane fractions of dental pulp tissue from carious and noncarious teeth using western blotting. Methodology Twenty two dental pulp samples were collected from carious and noncarious extracted teeth. Ten samples were processed for immunohistochemistry using a specific antibody to the NPY Y1 receptor. Twelve samples were used to obtain membrane extracts which were electrophoresed, blotted onto nitrocellulose and probed with NPY Y1 receptor antibody. Kruskal-Wallis one-way analysis of variance was employed to test for overall statistical differences between NPY Y1 levels in noncarious, moderately carious and grossly carious teeth. Results Neuropeptide Y Y1 receptor immunoreactivity was detected on the walls of blood vessels in pulp tissue from noncarious teeth. In carious teeth NPY Y1 immunoreactvity was observed on nerve fibres, blood vessels and inflammatory cells. Western blotting indicated the presence and confirmed the variability of NPY Y1 receptor protein expression in solubilised membrane preparations of human dental pulp tissue from carious and noncarious teeth. Conclusions Neuropeptide Y Y1 is expressed in human dental pulp tissue with evidence of increased expression in carious compared with noncarious teeth, suggesting a role for NPY Y1 in modulation of caries induced pulpal inflammation. © 2008 International Endodontic Journal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract
INTRODUCTION:
Neuropeptides play an important role in inflammation and repair and have been implicated in mediating angiogenesis. Pulp fibroblasts express neuropeptide receptors, and the aim of this research was to investigate whether neuropeptides could regulate angiogenic growth factor expression in vitro
METHODS:
An angiogenic array was used to determine the levels of 10 angiogenic growth factors expressed by human pulp fibroblasts.
RESULTS:
Pulp fibroblasts were shown to express angiogenin, angiopoietin-2, epidermal growth factor, basic fibroblast growth factor, heparin-binding epidermal growth factor, hepatocyte growth factor, leptin, platelet-derived growth factor, placental growth factor, and vascular endothelial growth factor. Furthermore, the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide Y altered angiogenic growth factor expression in vitro.
CONCLUSIONS:
The regulation of angiogenic growth factor expression by neuropeptides suggests a novel role for neuropeptides in pulpal inflammation and repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Transient receptor potential (TRP) channels comprise a group of nonselective calcium-permeable cationic channels, which are polymodal sensors of environmental stimuli such as thermal changes and chemicals. TRPM8 and TRPA1 are cold-sensing TRP channels activated by moderate cooling and noxious cold temperatures, respectively. Both receptors have been identified in trigeminal ganglion neurones, and their expression in nonneuronal cells is now the focus of much interest. The aim of this study was to investigate the molecular and functional expression of TRPA1 and TRPM8 in dental pulp fibroblasts.
Methods: Human dental pulp fibroblasts were derived from healthy molar teeth. Gene and protein expression was determined by polymerase chain reaction and Western blotting. Cellular localization was investigated by immunohistochemistry, and TRP functionality was determined by Ca2+ microfluorimetry.
Results: Polymerase chain reaction and Western blotting showed gene and protein expression of both TRPA1 and TRPM8 in fibroblast cells in culture. Immunohistochemistry studies showed that TRPA1 and TRPM8 immunoreactivity co-localized with the human fibroblast surface protein. In Ca2+ microfluorimetry studies designed to determine the functionality of TRPA1 and TRPM8 in pulp fibroblasts, we showed increased intracellular calcium ([Ca2+]i) in response to the TRPM8 agonist menthol, the TRPA1 agonist cinnamaldehyde, and to cool and noxious cold stimuli, respectively. The responses to agonists and thermal stimuli were blocked in the presence of specific TRPA1 and TRPM8 antagonists.
Conclusions: Human dental pulp fibroblasts express TRPA1 and TRPM8 at the molecular, protein, and functional levels, indicating a possible role for fibroblasts in mediating cold responses in human teeth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring neuropeptides in biological tissues by radioimmunoassay requires efficient extraction that maintains their immunoreactivity. Many different methods for extraction have been described, but there is little information on optimal extraction methods for individual neuropeptides from human dental pulp tissue. The aim was therefore to identify an effective extraction procedure for three pulpal neuropeptides: substance P. neurokinin A and calcitonin gene-related peptide. Tissue was obtained from 20 pulps taken from teeth freshly extracted for orthodontic reasons. The pulp samples were divided into four equal groups and different extraction methods were used for each group. Boiling whole pulp in acetic acid gave the highest overall yield and, in addition, offered an easy and rapid means of pulp tissue processing. The use of protease inhibitors did not increase the recovery of the immunoreactive neuropeptides but did provide the best combination of maximal recoveries and minimal variability. These results should be useful for planning the extraction of these neuropeptides from human pulp tissue in future studies. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract
INTRODUCTION:
Transient receptor potential (TRP) channels comprise a group of nonselective calcium-permeable cationic channels, which are polymodal sensors of environmental stimuli such as thermal changes and chemicals. TRPM8 and TRPA1 are cold-sensing TRP channels activated by moderate cooling and noxious cold temperatures, respectively. Both receptors have been identified in trigeminal ganglion neurones, and their expression in nonneuronal cells is now the focus of much interest. The aim of this study was to investigate the molecular and functional expression of TRPA1 and TRPM8 in dental pulp fibroblasts.
METHODS:
Human dental pulp fibroblasts were derived from healthy molar teeth. Gene and protein expression was determined by polymerase chain reaction and Western blotting. Cellular localization was investigated by immunohistochemistry, and TRP functionality was determined by Ca(2+) microfluorimetry.
RESULTS:
Polymerase chain reaction and Western blotting showed gene and protein expression of both TRPA1 and TRPM8 in fibroblast cells in culture. Immunohistochemistry studies showed that TRPA1 and TRPM8 immunoreactivity co-localized with the human fibroblast surface protein. In Ca(2+) microfluorimetry studies designed to determine the functionality of TRPA1 and TRPM8 in pulp fibroblasts, we showed increased intracellular calcium ([Ca(2+)](i)) in response to the TRPM8 agonist menthol, the TRPA1 agonist cinnamaldehyde, and to cool and noxious cold stimuli, respectively. The responses to agonists and thermal stimuli were blocked in the presence of specific TRPA1 and TRPM8 antagonists.
CONCLUSIONS:
Human dental pulp fibroblasts express TRPA1 and TRPM8 at the molecular, protein, and functional levels, indicating a possible role for fibroblasts in mediating cold responses in human teeth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inflammatory response to pulpal injury or infection has major clinical significance. Neurogenic inflammation describes the local release of neuropeptides, notably substance P (SP), from afferent neurones, and may play a role in the pathogenesis of pulpal disease. The fibroblast is the most numerous cell type in the dental pulp and recent work has suggested that it is involved in the inflammatory response. Objectives: The aims of the study were to determine whether pulp fibroblasts could produce SP, and to investigate the expression of the SP receptor, NK-1, by these cells. Methods: Primary pulp fibroblast cell populations were isolated by enzymatic digestion from non-carious teeth extracted for orthodontic reasons. Whole pulp tissue was obtained from freshly extracted sound (n=35) and carious (n=39) teeth. Expression of SP and NK-1 mRNA was determined by RT-PCR. The effects of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) on SP and NK-1 expression were also determined. The presence of NK-1 on fibroblast cell membranes was established by western blotting. The effects of the cytokines on each parameter were analysed by ANOVA. Radioimmunoassay (RIA) was carried out to quantify SP expression by pulp fibroblasts and in whole pulp tissue. Results: SP was expressed by pulpal fibroblasts both at the mRNA level and the protein level. In addition, NK-1 was detected in fibroblast cultures at the mRNA level and appeared as a double band on western blots of membrane extracts. IL-1β and TGF-β1 significantly stimulated the expression of SP and NK-1. SP levels were significantly greater (p<0.05) in carious compared to sound teeth. Conclusion: Pulp fibroblasts are capable of synthesising and secreting SP, as well as expressing the SP receptor, NK-1. These findings suggest that pulp fibroblasts play a role in neurogenic inflammation in pulpal disease. (Supported by the European Society of Endodontology.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The regulation of pulpal haemodynamics in health and disease involves sympathetic and parasympathetic mechanisms in which both neuropeptide Y (NPY; a sympathetic vasoconstrictor) and vasoactive intestinal polypeptide (VIP; a parasympathetic vasodilator) may play potential pathophysiological roles. We have previously investigated the levels of NPY or VIP present in human dental pulp tissue and shown that their expression is up-regulated in caries induced pulpal inflammation. Objectives: The aim of this study was to investigate the potential correlation between NPY and VIP levels measured in the same dental pulp samples using radioimmunoassay (RIA). Methods: Pulp tissue was obtained from extracted teeth, classified as follows; healthy (n=22), moderately carious (n=20) and grossly carious (n=26). Samples were processed for RIA by boiling in acetic acid as previously described. The levels of NPY and VIP, measured by RIA, were expressed as ng/gram of pulp tissue. The nature of the relationship between NPY and VIP levels in human pulp tissue was tested by calculating Pearson's product moment correlation coefficient using the linear regression test. Results: Calculation of Pearson product moment correlation coefficient showed a significant negative correlation between NPY and VIP levels in pulp tissue samples from non-carious teeth (p = 0.02, r = -.48). This negative correlation in non-carious teeth changed to a significant positive correlation in carious teeth when the levels of NPY and VIP were compared (p = 0.03, r= 0.311). Conclusions: In non-carious teeth, the negative correlation between NPY and VIP levels is in keeping with the previously described modulatory influence of cholinergic nerves on sympathetic function which may be perturbed as caries develops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)