982 resultados para HOST-SPECIFICITY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new species of Myxosporea, Henneguya aequidens sp. n. (Myxozoa: Myxobolidae), was described based on its ultrastructural features. This is a parasite of the freshwater fish Aequidens plagiozonatus, in the Peixe-boi River, Para, Brazil. This parasite was found in the gills, in the form of whitish ellipsoid cysts with mature spores inside them. The average spore body was 15 +/- 0.9 mu m in length (n = 30) and 6 +/- 0.8 mu m in width (n = 30), and the tail measured 27 +/- 0.5 mu m in length (n = 15). The spores showed typical features of the genus Henneguya with two valves of equal size and two symmetrical polar capsules of 3 +/- 0.3 mu m in length and 2 +/- 0.3 mu m in width. Each polar capsule had a polar filament forming a helix from the apical region to the polar caps, with four to six turns. Based on the ultrastructural differences in morphology of these spores, the location of the parasite, and its host specificity, this parasite was described as a new species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation was made of the communities of gill monogene genus Dactylogyrus (Platyhelminthes, Monogenea) and the populations of blackspot parasite (Platyhelminthes, Trematoda) of Pimephales promelas, Notropis stramineus, and Semotilus atromaculatus in 3 distinct sites along the 3 converging tributaries in southeastern Nebraska from 2004 to 2006. This work constitutes the first multi-site, multi-year study of a complex community of Dactylogyrus spp. and their reproductive activities on native North American cyprinid species. The biological hypothesis that closely related species with direct lifecycles respond differently to shared environmental conditions was tested. It was revealed that in this system that, Cyprinid species do not share Dactylogyrus species, host size and sex are not predictive of infection, and Dactylogyrus community structure is stable, despite variation in seasonal occurrence and populations among sites. The biological hypothesis that closely related species have innate differences in reproductive activities that provide structure to their populations and influence their roles in the parasite community was tested. It was revealed that in this system, host size, sex, and collection site are not predictive of reproductive activities, that egg production is not always continuous and varies in duration among congeners, and that recruitment of larval Dactylogyrus is not continuous across parasites’ reproductive periods. Hatch timing and host availability, not reproductive timing, are the critical factors determining population dynamics of the gill monogenes in time and space. Lastly, the biological hypothesis that innate blackspot biology is responsible for parasite host-specificity, host recruitment strategies and parasite population structure was tested. Field collections revealed that for blackspot, host size, sex, and collection month and year are not predictive of infection, that parasite cysts survive winter, and that host movement is restricted among the 3 collection sites. Finally, experimental infections of hosts with cercaria isolated from 1st intermediate snail hosts reveal that cercarial biology, not environmental circumstances, are responsible for differences in infection among hosts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ecological and taxonomic study of the helminth parasites of voles (Microtus spp.) in the Jackson Hole region of Wyoming is reported. Nematospiroides microti n. sp. from Microtus montanus nanus and M. richardsoni macropus is described and figured. A cestode, Paranoplocephala infrequens, and a nematode, Syphacia obvelata, were generally distributed throughout the region in all habitats except the sage flats. A trematode, Quinqueserialis hassalli, was recovered only from voles collected near streams at low altitudes. This was presumably due to the localized distribution of the molluscan intermediate host. Four helminths, viz., Hymenolepis horrida, Heligmosomum costellatum, Nematospiroides microti and Trichuris opaca, were restricted in their distribution to the alpine and sub-alpine meadows. Of these parasites, H. horrida and H. costellatum are reported for the first time from North America. Most of the other host and locality records are new. Available data indicate that host specificity was not a factor in restricting the distribution of parasites. Although the greatest numbers of parasites, both qualitative and quantitative, occurred in habitats where host density was greatest, it seems unlikely that host density is the only factor involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trypanosoma (Megatrypanum) melophagium is a parasite of sheep transmitted by sheep keds, the sheep-restricted ectoparasite Melophagus ovinus (Diptera: Hippoboscidae). Sheep keds were 100% prevalent in sheep from five organic farms in Croatia, Southeastern Europe, whereas trypanosomes morphologically compatible with T. melophagium were 86% prevalent in the guts of the sheep keds. Multilocus phylogenetic analyses using sequences of small subunit rRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase, spliced leader, and internal transcribed spacer 1 of the rDNA distinguished T. melophagium from all allied trypanosomes from other ruminant species and placed the trypanosome in the subgenus Megatrypanum. Trypanosomes from sheep keds from Croatia and Scotland, the only available isolates for comparison, shared identical sequences. All biologic and phylogenetic inferences support the restriction of T. melophagium to sheep and, especially, to the sheep keds. The comparison of trypanosomes from sheep, cattle, and deer from the same country, which was never achieved before this work, strongly supported the host-restricted specificity of trypanosomes of the subgenus Megatrypanum. Our findings indicate that with the expansion of organic farms, both sheep keds and T. melophagium may re-emerge as parasitic infections of sheep.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RTX toxins (repeats in the structural toxin) are pore-forming protein toxins produced by a broad range of pathogenic Gram-negative bacteria. In vitro, RTX toxins mostly exhibit a cytotoxic and often also a hemolytic activity. They are particularly widespread in species of the family Pasteurellaceae which cause infectious diseases, most frequently in animals but also in humans. Most RTX toxins are proteins with a molecular mass of 100-200 kDa and are post-translationally activated by acylation via a specific activator protein. The repeated structure of RTX toxins, which gave them their name, is composed of iterative glycine-rich nonapeptides binding Ca2+ on the C-terminal half of the protein. Genetic analysis of RTX toxins of various species of Pasteurellaceae and of a few other Gram-negative bacteria gave evidence of horizontal transfer of genes encoding RTX toxins and led to speculations that RTX toxins might have originated from Pasteurellaceae. The toxic activities of RTX toxins in host cells may lead to necrosis and apoptosis and the underlying detailed mechanisms are currently under investigation. The impact of RTX toxins in pathogenicity and the immune responses of the host were described for several species of Pasteurellaceae. Neutralizing antibodies were shown to significantly reduce the cytotoxic activity of RTX toxins. They constitute a valuable strategy in the development of immuno-prophylactics against several animal diseases caused by pathogenic species of Pasteurellaceae. Although many RTX toxins possess cytotoxic and hemolytic activities toward a broad range of cells and erythrocytes, respectively, a few RTX toxins were shown to have cytotoxic activity only against cells of specific hosts and/or show cell-type specificity. Further evidence exists that RTX toxins play a potential role in host specificity of certain pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although accumulating evidence indicates that local intraspecific density-dependent effects are not as rare in species-rich communities as previously suspected, there are still very few detailed and systematic neighborhood analyses of species-rich communities. Here, we provide such an analysis with the overall goal of quantifying the relative importance of inter- and intraspecific interaction strength in a primary, lowland dipterocarp forest located at Danum, Sabah, Malaysia. Using data on 10 abundant overstory dipterocarp species from two 4-ha permanent plots, we evaluated the effects of neighbors on the absolute growth rate of focal trees (from 1986 to 1996) over increasing neighborhood radii (from 1 to 20 m) with multiple regressions. Only trees 10 cm to < 100 cm girth at breast height in 1986 were considered as focal trees. Among neighborhood models with one neighbor term, models including only conspecific larger trees performed best in five out of 10 species. Negative effects of conspecific larger neighbors were most apparent in large overstory species such as those of the genus Shorea. However, neighborhood models with separate terms and radii for heterospecific and conspecific neighbors accounted for more variability in absolute growth rates than did neighborhood models with one neighbor term. The conspecific term was significant for nine out of 10 species. Moreover, in five out of 10 species, trees without conspecific neighbors had significantly higher absolute growth rates than trees with conspecific neighbors. Averaged over the 10 species, trees without conspecific neighbors grew 32.4 cm(2) in basal area from 1986 to 1996, whereas trees with conspecific neighbors only grew 14.7 cm(2) in basal area, although there was no difference in initial basal area between trees in the two groups. Averaged across the six species of the genus Shorea, negative effects of conspecific larger trees were significantly stronger than for heterospecific larger neighbors. Thus, high local densities within neighborhoods of 20 m may lead to strong intraspecific negative and, hence, density-dependent, effects even in species rich communities with low overall densities at larger spatial scales. We conjecture that the strength of conspecific effects may be correlated with the degree of host specificity of ectomycorrhizae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viruses seem to play a key role in European honey bee, Apis mellifera health, and have a much broader host spectrum than previously thought. Few studies have investigated interspecific virus transfer within the genus Apis. The introduction of A. mellifera into Asia exposed endemic Apis species to the risk of obtaining new viruses or viral strains and vice versa. To investigate the potential for host shifts, virus prevalence and sequences were monitored over three years in single and mixed-species apiaries hosting introduced A. mellifera and endemic Apis cerana. Deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), and sacbrood virus (SBV) were found, but not KBV, VDV-1, ABPV, or CBPV. Virus infections and prevalence were generally lower in A. cerana compared to A. mellifera, and varied over the years. The sequence data provided evidence for interspecific transfer of IAPV, BQCV, and DWV, but SBV strains seem to be species specific. Prevalence and sequence results taken together indicate that interspecific transfers of viruses are rare, even if honey bees are kept in close proximity. We discuss the pattern observed in the context host specificity and resistance. Our understanding of the extent of these exchanges is limited by a lack of knowledge on the mechanisms of adaptation of viruses to different hosts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many bacterial plasmids replicate by a rolling-circle mechanism that involves the generation of single-stranded DNA (ssDNA) intermediates. Replication of the lagging strand of such plasmids initiates from their single strand origin (sso). Many different types of ssos have been identified. One group of ssos, termed ssoA, which have conserved sequence and structural features, function efficiently only in their natural hosts in vivo. To study the host specificity of sso sequences, we have analyzed the functions of two closely related ssoAs belonging to the staphylococcal plasmid pE194 and the streptococcal plasmid pLS1 in Staphylococcus aureus. The pLS1 ssoA functioned poorly in vivo in S. aureus as evidenced by accumulation of high levels of ssDNA but supported efficient replication in vitro in staphylococcal extracts. These results suggest that one or more host factors that are present in sufficient quantities in S. aureus cell-free extracts may be limiting in vivo. Mapping of the initiation points of lagging strand synthesis in vivo and in vitro showed that DNA synthesis initiates from specific sites within the pLS1 ssoA. These results demonstrate that specific initiation of replication can occur from the pLS1 ssoA in S. aureus although it plays a minimal role in lagging strand synthesis in vivo. Therefore, the poor functionality of the pLS1 in vivo in a nonnative host is caused by the low efficiency rather than a lack of specificity of the initiation process. We also have identified ssDNA promoters and mapped the primer RNAs synthesized by the S. aureus and Bacillus subtilis RNA polymerases from the pE194 and pLS1 ssoAs. The S. aureus RNA polymerase bound more efficiently to the native pE194 ssoA as compared with the pLS1 ssoA, suggesting that the strength of RNA polymerase–ssoA interaction may play a major role in the functionality of the ssoA sequences in Gram-positive bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present here the complete genome sequence of a common avian clone of Pasteurella multocida, Pm70. The genome of Pm70 is a single circular chromosome 2,257,487 base pairs in length and contains 2,014 predicted coding regions, 6 ribosomal RNA operons, and 57 tRNAs. Genome-scale evolutionary analyses based on pairwise comparisons of 1,197 orthologous sequences between P. multocida, Haemophilus influenzae, and Escherichia coli suggest that P. multocida and H. influenzae diverged ≈270 million years ago and the γ subdivision of the proteobacteria radiated about 680 million years ago. Two previously undescribed open reading frames, accounting for ≈1% of the genome, encode large proteins with homology to the virulence-associated filamentous hemagglutinin of Bordetella pertussis. Consistent with the critical role of iron in the survival of many microbial pathogens, in silico and whole-genome microarray analyses identified more than 50 Pm70 genes with a potential role in iron acquisition and metabolism. Overall, the complete genomic sequence and preliminary functional analyses provide a foundation for future research into the mechanisms of pathogenesis and host specificity of this important multispecies pathogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viral vectors are the most efficient tools for gene delivery, and the search for tissue-specific infecting viruses is important for the development of in vivo gene therapy strategies. The baculovirus Autographa californica nuclear polyhedrosis virus is widely used as a vector for expression of foreign genes in insect cells, and its host specificity is supposed to be restricted to arthropods. Here we demonstrate that recombinant A. californica nuclear polyhedrosis virus is efficiently taken up by human hepatocytes via an endosomal pathway. High-level reporter gene expression from heterologous promoters was observed in human and rabbit hepatocytes in vitro. Mouse hepatocytes and some other epithelial cell types are targeted at a considerably lower rate. The efficiency of gene transfer by baculovirus considerably exceeds that obtained by calcium phosphate or lipid transfection. These properties of baculovirus suggest a use for it as a vector for liver-directed gene transfer but highlight a potential risk in handling certain recombinant baculoviruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are very few data on trichodinids of freshwater fishes in Australia. 2003 fishes were surveyed across Eastern Australia to investigate the diversity of trichodinids present, to determine which species have been introduced with exotic fishes and to determine the extent to which these species have crossed into native fish Populations. Twenty-one putative trichodinid species were recovered from the 33 fish species examined. Trichodina heterodentata, T. mutabilis and T. reticulata were the exotic species recovered regularly; a single specimen matched a fourth exotic species, T acuta. All four exotic species are redescribed from Australian material. Trichodina heterodentata was recorded from 17 species of fishes, 15 of which were new host records; this species is identified as one of emerging importance in fish parasitology and a list of its known hosts is presented. Two new native species are also described based on silver stained specimens: T cribbi sp. n. from Hypseleotris galii, H. klunzingeri, and Hypseleotris sp. 5; and T. bassonae sp. n. from Selenotoca multifasciata. Trichodina cribbi is characterised by a large circular central inclusion and approximately 28 denticles, which have a blade length slightly greater than the ray length. Trichodina bassonae is characterised by a small, round, central inclusion and approximately 25 denticles, which have straight, non tapering rays that are in line with the leading edge of the denticle blade. It is estimated that the Australian trichodinid fauna may include up to 150 as yet undescribed species and represents a major source of unexplored biodiversity.