863 resultados para HEPATITIS B VIRUS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective antiviral agents are thought to inhibit hepatitis B virus (HBV) DNA synthesis irreversibly by chain termination because reverse transcriptases (RT) lack an exonucleolytic activity that can remove incorporated nucleotides. However, since the parameters governing this inhibition are poorly defined, fully delineating the catalytic mechanism of the HBV-RT promises to facilitate the development of antiviral drugs for treating chronic HBV infection. To this end, pyrophosphorolysis and pyrophosphate exchange, two nonhydrolytic RT activities that result in the removal of newly incorporated nucleotides, were characterized by using endogenous avian HBV replication complexes assembled in vivo. Although these activities are presumed to be physiologically irrelevant for every polymerase examined, the efficiency with which they are catalyzed by the avian HBV-RT strongly suggests that it is the first known polymerase to catalyze these reactions under replicative conditions. The ability to remove newly incorporated nucleotides during replication has important biological and clinical implications: these activities may serve a primer-unblocking function in vivo. Analysis of pyrophosphorolysis on chain-terminated DNA revealed that the potent anti-HBV drug β-l-(−)-2′,3′-dideoxy-3′-thiacytidine (3TC) was difficult to remove by pyrophosphorolysis, in contrast to ineffective chain terminators such as ddC. This disparity may account for the strong antiviral efficacy of 3TC versus that of ddC. The HBV-RT pyrophosphorolytic activity may therefore be a novel determinant of antiviral drug efficacy, and could serve as a target for future antiviral drug therapy. The strong inhibitory effect of cytoplasmic pyrophosphate concentrations on viral DNA synthesis may also partly account for the apparent slow rate of HBV genome replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hepatitis B virus genome encodes a protein, termed HBx, that is widely recognized as a transcriptional transactivator. While HBx does not directly bind cis-acting transcriptional control elements, it has been shown to associate with cellular proteins that bind DNA. Because HBx transactivated a large number of viral/cellular transcriptional control elements, we looked for its targets within the components of the basal transcriptional machinery. This search led to the identification of its interactions with TFIIH. Here, we show that HBx interacts with yeast and mammalian TFIIH complexes both in vitro and in vivo. These interactions between HBx and the components of TFIIH are supported by several lines of evidence including results from immunoprocedures and direct methods of measuring interactions. We have identified ERCC3 and ERCC2 DNA helicase subunits of holoenzyme TFIIH as targets of HBx interactions. Furthermore, the DNA helicase activity of purified TFIIH from rat liver and, individually, the ERCC2 component of TFIIH is stimulated in the presence of HBx. These observations suggest a role for HBx in transcription and DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we reported that a 61-bp subgenomic HBV DNA sequence (designated as 15AB, nt 1855-1915) is a hot spot for genomic recombination and that a cellular protein binding to 15AB may be the putative recombinogenic protein. In the present study, we established the existence of a 15AB-like sequence in human and rat chromosomal DNA by Southern blot analysis. The 15AB-like sequence isolated from the rat chromosome demonstrated a 80.9% identity with 5'-CCAAGCTGTGCCTTGGGTGGC-3', at 1872-1892 of the hepatitis B virus genome, thought to be the essential region for recombination. Interestingly, this 15AB-like sequence also contained the pentanucleotide motifs GCTGG and CCAGC as an inverted repeat, part of the chi known hot spot for recombination in Escherichia coli. Importantly, a portion of the 15AB-like sequence is homologous (82.1%, 23/28 bp) to break point clusters of the human promyelocytic leukemia (PML) gene, characterized by a translocation [t(15;17)], and to rearranged mouse DNA for the immunoglobulin kappa light chain. Moreover, 15AB and 15AB-like sequences have striking homologies (12/15 = 80.0% and 13/15 = 86.7%, respectively) to the consensus sequence for topoisomerase II. Our present results suggest that this 15AB-like sequence in the rat genome might be a recombinogenic candidate triggering genomic instability in carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a cellular model of infection by the hepatitis B virus and describe how it may be used to account for two important features of the disease, namely (i) the wide variety of manifestations of infection and the age dependence thereof, and (ii) the typically long delay before the development of virus-induced liver cancer (primary hepatocellular carcinoma). The model is based on the assumption that the liver is comprised of both immature and mature hepatocytes, with these two subpopulations of cells responding contrastingly upon infection by the virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hepatitis B virus X protein (HBx) sequence (154 aa) has been divided into six regions (A-F) based on its sequence homology with X proteins of other mammalian hepadnaviruses. Regions A, C, and E are more conserved and include all the four conserved cysteines (C7, C61, C69, and C137). To localize the regions of HBx important for transactivation, a panel of 10 deletion mutants (X5-X14) and 4 single point mutants (X1-X4), each corresponding to a conserved cysteine residue, was constructed by site-directed mutagenesis. A HBx-specific monoclonal antibody was developed and used to confirm the expression of mutants by Western blot. Transactivation property of the HBx mutants was studied on Rous sarcoma virus-long terminal repeat (RSV-LTR) in transient transfection assays. We observed that deletion of the most conserved region A or substitution of the N-terminal cysteine (C7) had no effect on transactivation. Deletion of the nonconserved regions B or F also had no deleterious effects. Deletions of regions C and D resulted in a significant loss of function. Substitution of both C61 and C69 present in region C, caused almost 90% loss of activity that could be partially overcome by transfecting more expression plasmid. The fully conserved 9 amino acid segment (residues 132 to 140) within region E including C137 appeared to be crucial for its activity. Finally, a truncated mutant X15 incorporating only regions C to E (amino acids 58-140) was able to stimulate the RSV-LTR quite efficiently, suggesting a crucial role played by this domain in transactivation function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis B virus (HBV) infection is thought to be controlled by virus-specific cytotoxic T lymphocytes (CTL). We have recently shown that HBV-specific CTL can abolish HBV replication noncytopathically in the liver of transgenic mice by secreting tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) after antigen recognition. We now demonstrate that hepatocellular HBV replication is also abolished noncytopathically during lymphocytic choriomeningitis virus (LCMV) infection, and we show that this process is mediated by TNF-alpha and IFN-alpha/beta produced by LCMV-infected hepatic macrophages. These results confirm the ability of these inflammatory cytokines to abolish HBV replication; they elucidate the mechanism likely to be responsible for clearance of HBV in chronically infected patients who become superinfected by other hepatotropic viruses; they suggest that pharmacological activation of intrahepatic macrophages may have therapeutic value in chronic HBV infection; and they raise the possibility that conceptually similar events may be operative in other viral infections as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of chronic hepatitis B virus (HBV) infections with the reverse transcriptase inhibitor lamivudine leads to a rapid decline in plasma viremia and provides estimates for crucial kinetic constants of HBV replication. We find that in persistently infected patients, HBV particles are cleared from the plasma with a half-life of approximately 1.0 day, which implies a 50% daily turnover of the free virus population. Total viral release into the periphery is approximately 10(11) virus particles per day. Although we have no direct measurement of the infected cell mass, we can estimate the turnover rate of these cells in two ways: (i) by comparing the rate of viral production before and after therapy or (ii) from the decline of hepatitis B antigen during treatment. These two independent methods give equivalent results: we find a wide distribution of half-lives for virus-producing cells, ranging from 10 to 100 days in different patients, which may reflect differences in rates of lysis of infected cells by immune responses. Our analysis provides a quantitative understanding of HBV replication dynamics in vivo and has implications for the optimal timing of drug treatment and immunotherapy in chronic HBV infection. This study also represents a comparison for recent findings on the dynamics of human immunodeficiency virus (HIV) infection. The total daily production of plasma virus is, on average, higher in chronic HBV carriers than in HIV-infected patients, but the half-life of virus-producing cells is much shorter in HIV. Most strikingly, there is no indication of drug resistance in HBV-infected patients treated for up to 24 weeks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat shock protein Hsp90 is known as an essential component of several signal transduction pathways and has now been identified as an essential host factor for hepatitis B virus replication. Hsp90 interacts with the viral reverse transcriptase to facilitate the formation of a ribonucleoprotein (RNP) complex between the polymerase and an RNA ligand. This RNP complex is required early in replication for viral assembly and initiation of DNA synthesis through a protein-priming mechanism. These results thus invoke a role for the Hsp90 pathway in the formation of an RNP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using transgenic mice that replicate the hepatitis B virus (HBV) genome, we recently demonstrated that class I-restricted, hepatitis B surface antigen-specific cytotoxic T lymphocytes (CTLs) can noncytolytically eliminate HBV pregenomic and envelope RNA transcripts from the hepatocyte. We now demonstrate that the steady-state content of these viral transcripts is profoundly reduced in the nucleus and cytoplasm of CTL-activated hepatocytes, but their transcription rates are only slightly reduced. Additionally, we demonstrate that transcripts covering the HBV X coding region are resistant to downregulation by the CTL. These results imply the existence of CTL-inducible hepatocellular factors that interact with a discrete element(s) between nucleotides 3157 and 1239 within the viral pregenomic and envelope transcripts and mediate their degradation, thus converting the hepatocyte from a passive victim to an active participant in the host response to HBV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human hepatitis B virus (HBV) HBx protein is a small transcriptional activator that is essential for virus infection. HBx is thought to be involved in viral hepatocarcinogenesis because it promotes tumorigenesis in transgenic mice. HBx activates the RAS-RAF-mitogen-activated protein (MAP) kinase signaling cascade, through which it activates transcription factors AP-1 and NF-kappa B, and stimulates cell DNA synthesis. We show that HBx stimulates cell cycle progression, shortening the emergence of cells from quiescence (G0) and entry into S phase by at least 12 h, and accelerating transit through checkpoint controls at G0/G1 and G2/M. Compared with serum stimulation, HBx was found to strongly increase the rate and level of activation of the cyclin-dependent kinases CDK2 and CDC2, and their respective active association with cyclins E and A or cyclin B. HBx is also shown to override or greatly reduce serum dependence for cell cycle activation. Both HBx and serum were found to require activation of RAS to stimulate cell cycling, but only HBx could shorten checkpoint intervals. HBx therefore stimulates cell proliferation by activating RAS and a second unknown effector, which may be related to its reported ability to induce prolonged activation of JUN or to interact with cellular p53 protein. These data suggest a molecular mechanism by which HBx likely contributes to viral carcinogenesis. By deregulating checkpoint controls, HBx could participate in the selection of cells that are genetically unstable, some of which would accumulate unrepaired transforming mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X gene product encoded by the hepatitis B virus, termed pX, is a promiscuous transactivator of a variety of viral and cellular genes under the control of diverse cis-acting elements. Although pX does not appear to directly bind DNA, pX-responsive elements include the NF-kappa B, AP-1, and CRE (cAMP response element) sites. Direct protein-protein interactions occur between viral pX and the CRE-binding transcription factors CREB and ATF. Here we examine the mechanism of the protein-protein interactions occurring between CREB and pX by using recombinant proteins and in vitro DNA-binding assays. We demonstrate that pX interacts with the basic region-leucine zipper domain of CREB but not with the DNA-binding domain of the yeast transactivator protein Gal4. The interaction between CREB and pX increases the affinity of CREB for the CRE site by an order of magnitude, although pX does not alter the rate of CREB dimerization. Methylation interference footprinting reveals differences between the CREB DNA and CREB-pX DNA complexes. These experiments demonstrate that pX titers the way CREB interacts with the CRE DNA and suggest that the basic, DNA-binding region of CREB is the target of pX. Transfection assays in PC12 cells with the CREB-dependent somatostatin promoter demonstrate a nearly 15-fold transcriptional induction after forskolin stimulation in the presence of pX. These results support the significance of the CREB-pX protein-protein interactions in vivo.