998 resultados para Groundwater degradation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project has been developed to evaluate the possible relationship between the cesspit (pit latrine) in as far as it degrades the quality of underground water. Its importance is due to the fact that in the rural communities in the State of São Paulo (Brazil) this type of cesspit is very common as a means of sewage disposal and these communities use underground water for their supply of drinking water. Rural properties distributed over the rural area in the municipality of São José do Rio Preto were selected. A preliminary study was then set up to determine the social situation and health of the households as well as qualitative evaluations on the type of water supply and sewage disposal of these communities. Campaigns of water sampling then followed and laboratory analyses of water taken from wells were carried out. Parameters were set up to evaluate the potability according to Brazilian legislation (2004) paying attention to microbiologic (coliforms, Crytosporidium sp., and adenovirus). The analyses showed evidence of possible interaction between the wells and the sewage effluents and drainage in these communities. A PCR reaction to detect adenovirus showed a presence in 53.3% of the samples. The tests for the detection of Cryotosporidium sp all showed a negative result.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A hydrological–economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus ‘pumping’: (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009–2010 and the average 2010–2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI + PU (G < 0) in the average year 2010–2011, with net lateral inflow from adjacent Cambrian formations being the largest recharge component. R is expected to be much less than PI + PU in recurrent dry spells. Some low-technology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present paper, sorption, persistence, and leaching behavior of three microcystin variants in Chinese agriculture soils were examined. Based on this study, the values of capacity factor and slope for three MCs variants in three soils ranged from 0.69 to 6.00, and 1.01 to 1.54, respectively. The adsorption of MCs in the soils decreased in the following order: RR > Dha(7) LR > LR. Furthermore, for each MC variant in the three soils, the adsorption rate in the soils decreased in the following order: soil A > soil C > soil B. The calculated half-time ranged between 7.9 and 17.8 days for MC-RR, 6.0-17.1 days for MC-LR, and 7.1-10.2 days for MC-Dha(7) LR. Results from leaching experiments demonstrated that recoveries of toxins in leachates ranged from 0-16.7% for RR, 73.2-88.9% for LR, and 8.9-73.1% for Dha 7 LR. The GUS value ranged from 1.48 to 2.06 for RR, 1.82-2.88 for LR, and 1.76-2.09 for Dha(7) LR. Results demonstrated the use of cyanobacterial collections as plant fertilizer is likely to be unsafe in soils. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study is the first investigation of biodegradation of carbon disulphide (CS2) in soil that provides estimates of degradation rates and identifies intermediate degradation products and carbon isotope signatures of degradation. Microcosm studies were undertaken under anaerobic conditions using soil and groundwater recovered from CS2-contaminated sites. Proposed degradation mechanisms were validated using equilibrium speciation modelling of concentrations and carbon isotope ratios. A first-order degradation rate constant of 1.25 × 10-2 h-1 was obtained for biological degradation with soil. Carbonyl sulphide (COS) and hydrogen sulphide (H2S) were found to be intermediates of degradation, but did not accumulate in vials. A 13C/12C enrichment factor of -7.5 ± 0.8 ‰ was obtained for degradation within microcosms with both soil and groundwater whereas a 13C/12C enrichment factor of -23.0 ± 2.1 ‰ was obtained for degradation with site groundwater alone. It can be concluded that biological degradation of both CS2-contaminated soil and groundwater is likely to occur in the field suggesting that natural attenuation may be an appropriate remedial tool at some sites. The presence of biodegradation by-products including COS and H2S indicates that biodegradation of CS2 is occurring and stable carbon isotopes are a promising tool to quantify CS2 degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface water and groundwater are the most important water sources in the natural environment. Land use and seasonal factors play an important role in influencing the quality of these water sources. An in-depth understanding of the role of these two influential factors can help to implement an effective catchment management strategy for the protection of these water sources. This paper discusses the outcomes of an extensive research study which investigated the role of land use and seasonal factors on surface water and groundwater pollution in a mixed land use coastal catchment. The study confirmed that the influence exerted on the water environment by seasonal factors is secondary to that of land use. Furthermore, the influence of land use and seasonal factors on surface water and groundwater quality varies with the pollutant species. This highlights the need to specifically take into consideration the targeted pollutants and the key influential factors for the effective protection of vulnerable receiving water environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Australia communities are concerned about atrazine being detected in drinking water supplies. It is important to understand mechanisms by which atrazine is transported from paddocks to waterways if we are to reduce movement of agricultural chemicals from the site of application. Two paddocks cropped with grain sorghum on a Black Vertosol were monitored for atrazine, potassium chloride (KCl) extractable atrazine, desethylatrazine (DEA), and desisopropylatrazine (DIA) at 4 soil depths (0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m) and in runoff water and runoff sediment. Atrazine + DEA + DIA (total atrazine) had a half-life in soil of 16-20 days, more rapid dissipation than in many earlier reports. Atrazine extracted in dilute potassium chloride, considered available for weed control, was initially 34% of the total and had a half-life of 15-20 days until day 30, after which it dissipated rapidly with a half life of 6 days. We conclude that, in this region, atrazine may not pose a risk for groundwater contamination, as only 0.5% of applied atrazine moved deeper than 0.20 m into the soil, where it dissipated rapidly. In runoff (including suspended sediment) atrazine concentrations were greatest during the first runoff event (57 days after application) (85 μg/L) and declined with time. After 160 days, the total atrazine lost in runoff was 0.4% of the initial application. The total atrazine concentration in runoff was strongly related to the total concentration in soil, as expected. Even after 98% of the KCl-extractable atrazine had dissipated (and no longer provided weed control), runoff concentrations still exceeded the human health guideline value of 40 μg/L. For total atrazine in soil (0-0.05 m), the range for coefficient of soil sorption (Kd) was 1.9-28.4 mL/g and for soil organic carbon sorption (KOC) was 100-2184 mL/g, increasing with time of contact with the soil and rapid dissipation of the more soluble, available phase. Partition coefficients in runoff for total atrazine were initially 3, increasing to 32 and 51 with time, values for DEA being half these. To minimise atrazine losses, cultural practices that maximise rain infiltration, and thereby minimise runoff, and minimise concentrations in the soil surface should be adopted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recognition that urban groundwater is a potentially valuable resource for potable and industrial uses due to growing pressures on perceived less polluted rural groundwater has led to a requirement to assess the groundwater contamination risk in urban areas from industrial contaminants such as chlorinated solvents. The development of a probabilistic risk based management tool that predicts groundwater quality at potential new urban boreholes is beneficial in determining the best sites for future resource development. The Borehole Optimisation System (BOS) is a custom Geographic Information System (GIs) application that has been developed with the objective of identifying the optimum locations for new abstraction boreholes. BOS can be applied to any aquifer subject to variable contamination risk. The system is described in more detail by Tait et al. [Tait, N.G., Davison, J.J., Whittaker, J.J., Lehame, S.A. Lerner, D.N., 2004a. Borehole Optimisation System (BOS) - a GIs based risk analysis tool for optimising the use of urban groundwater. Environmental Modelling and Software 19, 1111-1124]. This paper applies the BOS model to an urban Permo-Triassic Sandstone aquifer in the city centre of Nottingham, UK. The risk of pollution in potential new boreholes from the industrial chlorinated solvent tetrachloroethene (PCE) was assessed for this region. The risk model was validated against contaminant concentrations from 6 actual field boreholes within the study area. In these studies the model generally underestimated contaminant concentrations. A sensitivity analysis showed that the most responsive model parameters were recharge, effective porosity and contaminant degradation rate. Multiple simulations were undertaken across the study area in order to create surface maps indicating areas of low PCE concentrations, thus indicating the best locations to place new boreholes. Results indicate that northeastern, eastern and central regions have the lowest potential PCE concentrations in abstraction groundwater and therefore are the best sites for locating new boreholes. These locations coincide with aquifer areas that are confined by low permeability Mercia Mudstone deposits. Conversely southern and northwestern areas are unconfined and have shallower depth to groundwater. These areas have the highest potential PCE concentrations. These studies demonstrate the applicability of BOS as a tool for informing decision makers on the development of urban groundwater resources. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. Methods and Results: Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. Conclusion: The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. Significance and Impact of the Study: This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used geophysics, microbiology, and geochemistry to link large-scale (30+ m) geophysical self-potential (SP) responses at a groundwater contaminant plume with its chemistry and microbial ecology of groundwater and soil from in and around it. We have found that microbially mediated transformation of ammonia to nitrite, nitrate, and nitrogen gas was likely to have promoted a well-defined electrochemical gradient at the edge of the plume, which dominated the SP response. Phylogenetic analysis demonstrated that the plume fringe or anode of the geobattery was dominated by electrogens and biodegradative microorganisms including Proteobacteria alongside Geobacteraceae, Desulfobulbaceae, and Nitrosomonadaceae. The uncultivated candidate phylum OD1 dominated uncontaminated areas of the site. We defined the redox boundary at the plume edge using the calculated and observed electric SP geophysical measurements. Conductive soils and waste acted as an electronic conductor, which was dominated by abiotic iron cycling processes that sequester electrons generated at the plume fringe. We have suggested that such geoelectric phenomena can act as indicators of natural attenuation processes that control groundwater plumes. Further work is required to monitor electron transfer across the geoelectric dipole to fully define this phenomenon as a geobattery. This approach can be used as a novel way of monitoring microbial activity around the degradation of contaminated groundwater plumes or to monitor in situ bioelectric systems designed to manage groundwater plumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorinated solvents are the most ubiquitous organic contaminants found in groundwater since the last five decades. They generally reach groundwater as Dense Non-Aqueous Phase Liquid (DNAPL). This phase can migrate through aquifers, and also through aquitards, in ways that aqueous contaminants cannot. The complex phase partitioning to which chlorinated solvent DNAPLs can undergo (i.e. to the dissolved, vapor or sorbed phase), as well as their transformations (e.g. degradation), depend on the physico-chemical properties of the contaminants themselves and on features of the hydrogeological system. The main goal of the thesis is to provide new knowledge for the future investigations of sites contaminated by DNAPLs in alluvial settings, proposing innovative investigative approaches and emphasizing some of the key issues and main criticalities of this kind of contaminants in such a setting. To achieve this goal, the hydrogeologic setting below the city of Ferrara (Po plain, northern Italy), which is affected by scattered contamination by chlorinated solvents, has been investigated at different scales (regional and site specific), both from an intrinsic (i.e. groundwater flow systems) and specific (i.e. chlorinated solvent DNAPL behavior) point of view. Detailed investigations were carried out in particular in one selected test-site, known as “Caretti site”, where high-resolution vertical profiling of different kind of data were collected by means of multilevel monitoring systems and other innovative sampling and analytical techniques. This allowed to achieve a deep geological and hydrogeological knowledge of the system and to reconstruct in detail the architecture of contaminants in relationship to the features of the hosting porous medium. The results achieved in this thesis are useful not only at local scale, e.g. employable to interpret the origin of contamination in other sites of the Ferrara area, but also at global scale, in order to address future remediation and protection actions of similar hydrogeologic settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty-five public supply wells throughout the hydrogeologically diverse region of Scania, southern Sweden are subjected to environmental tracer analysis (³H–³He,⁴He, CFCs, SF₆ and for one well only also ⁸⁵Kr and ³⁹Ar) to study well and aquifer vulnerability and evaluate possibilities of groundwater age distribution assessment. We find CFC and SF₆ concentrations well above solubility equilibrium with modern atmosphere, indicating local contamination, as well as indications of CFC degradation. The tracer-specific complications considerably constrain possibilities for sound quantitative regional ground- water age distribution assessment and demonstrate the importance of initial qualitative assessment of tracer-specific reliability, as well a need for additional, complementary tracers (e.g. ⁸⁵Kr,³⁹Ar and potentially also ¹⁴C). Lumped parameter modelling yields credible age distribution assessments for representative wells in four type aquifers. Pollution vulnerability of the aquifer types was based on the selected LPM models and qualitative age characterisation. Most vulnerable are unconfined dual porosity and fractured bedrock aquifers, due to a large component of very young groundwater. Unconfined sedimentary aquifers are vulnerable due to young groundwater and a small pre-modern component. Less vulnerable are semi-confined sedimentary or dual-porosity aquifers, due to older age of the modern component and a larger pre-modern component. Confined aquifers appear least vulnerable, due an entirely pre-modern groundwater age distribution (recharged before 1963). Tracer complications aside, environmental tracer analyses and lumped parameter modelling aid in vulnerability assessment and protection of regional groundwater resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rurallivelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rurallivelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.