976 resultados para Graphene oxide reduction and graphene bucky-papers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the sensitiveness of the information obtained for the residual lignin from Eucalyptus grandis kraft pulps analyzed through the nitrobenzene oxidation, copper oxide (CuO) reduction and acidolysis techniques. The chips were cooked, resulting pulps of kappa number 14,5 and 16,9, respectively. Both lignins' pulps were evaluated through three methods (nitrobenzene oxidation, copper oxide oxidation and acidolysis). Then, they were subjected to an oxygen delignification stage. The 16,9 kappa number pulp resulted in higher levels of non-condensed lignin structures by the acidolysis method, higher syringyl/vanillin ratios (S/V) by the nitrobenzene and copper oxide methods and better performance in the oxygen delignification stage. The different methods allowed to differ the residual lignin pulps with kappa number 14,5 and 16,9, and the nitrobenzene oxidation method showed the highest sensitiveness in this study results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A composite of manganese oxide and reduced graphene oxide (rGO) is prepared in a single step electrochemical reduction process in a phosphate buffer solution for studying as an electrocatalyst for the oxygen evolution reaction (OER). The novel composite catalyst, namely, MnOx-Pi-rGO, is electrodeposited from a suspension of graphene oxide (GO) in a neutral phosphate buffer solution containing KMnO4. The manganese oxide incorporates phosphate ions and deposits on the rGO sheet, which in turn is formed on the substrate electrode by electrochemical reduction of GO in the suspension. The OER is studied with the MnOx-Pi-rGO catalyst in a neutral phosphate electrolyte by linear sweep voltammetry. The results indicate a positive influence of rGO in the catalyst. By varying the ratio of KMnO4 and GO in the deposition medium and performing linear sweep voltammetry for the OER, the optimum composition of the deposition medium is obtained as 20 mM KMnO4 + 6.5% GO in 0.1 M phosphate buffer solution of pH 7. Under identical conditions, the MnOx-Pi-rGO catalyst exhibits 6.2 mA cm(-2) OER current against 2.9 mA cm(-2) by MnOx-Pi catalyst at 2.05 V in neutral phosphate solution. The Tafel slopes measured for OER at MnOx-Pi and MnOx-Pi-rGO are similar in magnitude at about 0.180 V decade(-1). The high Tafel slopes are attributed to partial dissolution of the catalyst during oxygen evolution. The O-2 evolved at the catalyst is measured by the water displacement method and the positive role of rGO on catalytic activity of MnOx-Pi is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 A super conductive graphene with continuous three dimensional (3D) porous structures that can potentially be used as flexible conductors has been produced by one step reduction of graphene oxide (GO) film. The high renaissance properties have been demonstrated by mechanical and electrical results where a noticeable increase in the electrical conductivity to 3850 S/cm has been demonstrated after embedding the 3D graphene foam into nearly insulated polydimethylsiloxane (PDMS). The graphene integrated PDMS film has a higher strain up to 100% elongation compared with the strain of only 60% for PDMS. Fourier transform infrared (FTIR) and x-ray photoemission spectroscopy (XPS) results reveal that most oxidized groups have been removed, which contributes to the renaissance of most outstanding properties of graphene because of the recovery of sp2 carbon structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the synthesis of platinum nanoparticle-reduced graphene oxide (PtNP-rGO) composites and their application as a novel architecture in electrochemical detection of rutin. PtNPs anchored over rGO are synthesized through a facile one-pot synthesis method, where the reduction of GO and in situ generation of PtNPs occurred concurrently. The characterization results of transmission electron microscopy (TEM) demonstrate that PtNPs with small particle sizes are dispersed on the rGO matrix. Electrochemical measurements reveal that a PtNP-rGO modified glass carbon electrode (GCE) directly catalyzes rutin oxidation and displays an enhanced current response compared with a bare GCE. Under the optimal experimental conditions, the peak current was linear with rutin concentration in the range of 5 × 10-8 to 1 × 10-5 M with the detection limit of 1 × 10-8 M (S/N = 3) by differential pulse voltammetry. The proposed method was successfully applied to determine rutin in tablet samples with satisfactory results. This journal is

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 A green method for the deoxygenation of graphene oxide (GO) was developed using K2CO3 as a reusable reduction agent. The size and thickness of the reduced GO are less than 1 μm and around 0.85 nm, respectively. Carbon dioxide is the only byproduct during this process. The reduction mechanism of the graphene oxide includes two reduction steps. On the one hand, ionic oxygen generated from the electrochemical reaction between hydroxyl ions and oxygen in the presence of K2CO3 reacts with carbonyl groups attached to the GO layers at 50°C. On the other hand, ionic oxygen attacks hydroxyl and epoxide groups, which become carbonyl groups and then are converted to carbon dioxide by K2CO3 at 90°C. These oxygenous groups are finally converted to CO2 from graphene layers, leading to the formation of graphene sheets. Headspace solid-phase microextraction and gas chromatography-mass spectrometry detected the existence of n-dodecanal and 4-ethylbenzoic acid cyclopentyl ester during the reduction, suggesting that oxygen functional groups on the GO layers are not only aligned, but randomly dispersed in some areas based on the proposed mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced graphene oxide-lead dioxide composite is formed when EGO coated surface is electrochemically reduced along with lead ions in the solution. This composite has been shown to be an excellent material for low level detection of arsenic. Various functional groups present on EGO, in a wide pH range of 2-11, are responsible for the favorable interaction between metal ion and the modified electrode surface and subsequent trace level detection. X-ray photoelectron spectroscopy and Raman spectroscopic techniques confirm the formation of composite and its composition. Thin layer of lead dioxide along with reduced exfoliated graphene oxide has been shown to be responsible for the enhanced activity of the surface. The detection limit of arsenic is found to be 10 nM. This study opens up the possibility of using the composites for sensing applications and possibly simultaneous detection of arsenic and lead. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of photo- and thermo-responsive composite microsphere composed of reduced graphene oxide nanoparticles and poly(N-isopropylacrylamide) (rGO@pNIPAM) is successfully fabricated by a facile solution mixing method. Due to the high optical absorbance and thermal conduction of rGO, the composite microspheres are endowed with the new property of photo-response, in addition to the intrinsic thermally sensitive property of pNIPAM. This new ability undoubtedly enlarges the scope of applications of the microgel spheres. Furthermore, through controlling the rGO content in the composite, the photo- and thermo-sensitivity of the composite can be effectively modulated. That is, with a lower rGO content (≤32% by weight), the composite microspheres perform only thermally induced changes, such as volume contraction (by ∼45% in diameter) and drug release, when crossing the lower critical solution temperature of pNIPAM. With a higher rGO content (∼47.5%), both temperature and light irradiation can trigger changes in the composite. However, when the rGO content is increased to around 64.5%, the thermo-responsivity of the composite disappears, and the spheres exhibit only photo-induced drug release. With a further increase in rGO content, the environmentally responsive ability of the microspheres vanishes. This journal is © the Partner Organisations 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we report the clean and facile synthesis of Pt and Pd nanoparticles decorated on reduced graphene oxide (rGO) by the simultaneous reduction of graphene oxide (GO) and the metal ions in Mg/acid medium. As-generated Pt and Pd nanoparticles serve as a heterogeneous catalyst for the further reduction of the rGO by the hydrogen spill-over process. The C/O ratio is much higher as compared to the rGO obtained by the reduction of GO by only Mg/acid. Overall, the process is rapid, facile and green that does not require any toxic chemical agent or any rigorous chemical reactions. We perform the catalytic reduction of 4-nitophenol (4-NP) to 4-aminophenol (4-AP) at room temperature by Pd@rGO and Pt@rGO. The reduction is complete within 35 s for Pd@rGO and 60 s for Pt@rGO when 50 mu g of hybrid catalyst is used for 0.5 ml of 1 mM of 4-NP. In case of ethanol oxidation, the current density for Pd@rGO is comparable to commercial Pt/C but is doubled for Pt@rGO. Overall, both structures show highly stable catalytic activity compared to commercial Pt/C. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous NO reduction and CO oxidation in the presence of O-2,H2O and SO2 over Cu/Mg/AUO (Cu-cat), Ce/Mg/Al/O (Ce-cat) and Cu/Ce/Mg/Al/O (CuCe-cat) were studied. At low temperatures (<340 degreesC), the presence of O-2 or H2O enhanced the activity of CuCe-cat for NO and CO conversions, but significantly suppressed the activity of Cu-cat and Ce-cat, At high temperature (720 degreesC), the presence of O-2 or H2O had no adverse effect on the NO and CO conversions over these catalysts. The addition of SO2 to NO + CO + O-2 + H2O system had no effect on the, reaction of CO + O-2 over Cu-cat, but deactivated this catalyst for NO + CO and CO + H2O reactions; over Ce-cat, all of these reactions of NO + CO, CO + O-2 and CO + H2O were suppressed significantly; over CuCe-cat, NO + CO and CO + O-2 reactions were not affected while the reaction of CO + H2O was slightly inhibited. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focused ion beam (FIB) milling through carbon nanotube (CNT) yarns and bucky-papers followed by scanning electron microscopy has recently emerged as a powerful tool for eliciting details of their internal structure. The internal arrangement of CNTs in bucky-papers and yarns directly affects their performance and characteristics. Consequently this information is critical for further optimisation of these structures and to tailor their properties for specific applications. This chapter describes in detail FIB milling of CNT yarns and bucky-papers and gives a range of examples where FIB milling has enabled a better understanding of how processing conditions and treatments affect the internal structure. Emphasis is placed on how FIB milling elucidates the influence of fabrication conditions on the internal arrangement of CNTs and how this influences the material's macroscopic properties.