395 resultados para Glycoproteins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poster presented at the 2015 Keystone Symposia Conference X5: HIV Vaccines. Banff, Alberta, Canada, 22-27 March 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate whether UL43 protein, which is highly conserved in alpha- and gamma herpes viruses, and a non-glycosylated transmembrane protein, is involved in virus entry and virus-induced cell fusion. Methods: Mutagenesis was accomplished by a markerless two-step Red recombination mutagenesis system implemented on the Herpes simplex virus 1 (HSV-1) bacterial artificial chromosome (BAC). Growth properties of HSV-1 UL43 mutants were analyzed using plaque morphology and one-step growth kinetics. SDS-PAGE and Western blot was employed to assay the synthesis of the viral glycoproteins. Virus-penetration was assayed to determine if UL43 protein is required for efficient virus entry. Results: Lack of UL43 expression resulted in significantly reduced plaque sizes of syncytial mutant viruses and inhibited cell fusion induced by gBΔ28 or gKsyn20 (p < 0.05). Deletion of UL43 did not affect overall expression levels of viral glycoproteins gB, gC, gD, and gH on HSV-1(F) BAC infected cell surfaces. Moreover, mutant viruses lacking UL43 gene exhibited slower kinetics of entry into Vero cells than the parental HSV-1(F) BAC. Conclusion: Thus, these results suggest an important role for UL43 protein in mediating virus-induced membrane fusion and efficient entry of virion into target cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE: Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lectins are proteins/glycoproteins of non-immune origin that agglutinate red blood cells, lymphocytes, fibroblasts, etc., and bind reversibly to carbohydrates present on the apposing cells. They have at least two carbohydrate binding sites and their binding can be inhibited by one or more carbohydrates. Owing to carbohydrate binding specificity of lectins, they mediate cell-cell interactions and play role in protozoan adhesion and host cell cytotoxicity, thus are central to the pathogenic property of the parasite. Several parasitic protozoa possess lectins which mediate parasite adherence to host cells based on their carbohydrate specificities. These interactions could be exploited for development of novel therapeutics, targeting the adherence and thus helpful in eradicating wide spread of protozoan diseases. The current review highlights the present state knowledge with regard to protozoal lectins with an emphasis on their haemagglutination activity, carbohydrate specificity, characteristics and also their role in pathogenesis notably as adhesion molecules, thereby aiding the pathogen in disease establishment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis C virus is a positive-sense single-stranded RNA virus. The gene junction partitioning the viral glycoproteins E1 and E2 displays concurrent sequence evolution with the 3′-end of E1 highly conserved and the 5′-end of E2 highly heterogeneous. This gene junction is also believed to contain structured RNA elements, with a growing body of evidence suggesting that such structures can act as an additional level of viral replication and transcriptional control. We have previously used ultradeep pyrosequencing to analyze an amplicon library spanning the E1/E2 gene junction from a treatment naïve patient where samples were collected over 10 years of chronic HCV infection. During this timeframe maintenance of an in-frame insertion, recombination and humoral immune targeting of discrete virus sub-populations was reported. In the current study, we present evidence of epistatic evolution across the E1/E2 gene junction and observe the development of co-varying networks of codons set against a background of a complex virome with periodic shifts in population dominance. Overtime, the number of codons actively mutating decreases for all virus groupings. We identify strong synonymous co-variation between codon sites in a group of sequences harbouring a 3 bp in-frame insertion and propose that synonymous mutation acts to stabilize the RNA structural backbone.