944 resultados para Glutathione transferase


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N- (methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/1 blood; 6.7 and 6.7 μg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potato leafroll virus (PLRV) is a positive-strand RNA virus that generates subgenomic RNAs (sgRNA) for expression of 3' proximal genes. Small RNA (sRNA) sequencing and mapping of the PLRV-derived sRNAs revealed coverage of the entire viral genome with the exception of four distinctive gaps. Remarkably, these gaps mapped to areas of PLRV genome with extensive secondary structures, such as the internal ribosome entry site and 5' transcriptional start site of sgRNA1 and sgRNA2. The last gap mapped to ~500. nt from the 3' terminus of PLRV genome and suggested the possible presence of an additional sgRNA for PLRV. Quantitative real-time PCR and northern blot analysis confirmed the expression of sgRNA3 and subsequent analyses placed its 5' transcriptional start site at position 5347 of PLRV genome. A regulatory role is proposed for the PLRV sgRNA3 as it encodes for an RNA-binding protein with specificity to the 5' of PLRV genomic RNA. © 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Between 1984 and 1997, six cases of urothelial cancer and 14 cases of renal cell cancer occurred in a group of 500 underground mining workers in the copper-mining industry of the former German Democratic Republic, with high exposures to explosives containing technical dinitrotoluene. Exposure durations ranged from 7 to 37 years, and latency periods ranged from 21 to 46 years. The incidences of both urothelial and renal cell tumors in this group were much higher than anticipated on the basis of the cancer registers of the German Democratic Republic by factors of 4.5 and 14.3, respectively. The cancer cases and a representative group of 183 formerly dinitrotoluene- exposed miners of this local industry were interviewed for their working history and grouped into four exposure categories. This categorization of the 14 renal cell tumor cases revealed no dose-dependency concerning explosives in any of the four exposure categories and was similar to that of the representative group of employees, whereas the urothelial tumor cases were predominantly confined to the high-exposure categories. Furthermore, all identified tumor patients were genotyped by polymerase chain reaction, using lymphocyte DNA, regarding their genetic status of the polymorphic xenobiotic metabolizing enzymes, including the N-acetyltransferase 2 and the glutathione-S-transferases M1 and T1. This genotyping revealed remarkable distributions only for the urothelial tumor cases, who were exclusively identified as 'slow acetylators.' This points to the possibility of human carcinogenicity of dinitrotoluene, with regard to the urothelium as the target tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suspected nephrocarcinogenic effects of trichloroethene (TRI) in humans are attributed to metabolites derived from the glutathione transferase (GST) pathway. The influence of polymorphisms of GSTM1 and GSTT1 isoenzymes on the risk of renal cell cancer in subjects having been exposed to high levels of TRI over many years was investigated. GSTM1 and GSTT1 genotypes were determined by internal standard controlled polymerase chain reaction. Fourty-five cases with histologically verified renal cell cancer and a history of long-term occupational exposure to high concentrations of TRI were studied. A reference group consisted of 48 workers from the same geographical region with similar histories of occupational exposures to TRI but not suffering from any cancer. Among the 45 renal cell cancer patients, 27 carried at least one functional GSTM1 (GSTM1 +) and 18 at least one functional GSTT1 (GSTT1 +). Among the 48 reference workers, 17 were GSTM1 + and 31 were GSTT1 +. Odds ratios for renal cell cancer were 2.7 for GSTM1 + individuals (95% CI, 1.18-6.33; P < 0.02) and 4.2 for GSTT1 + individuals (95% CI, 1.16-14.91; P < 0.05), respectively. The data support the present concept of the nephrocarcinogenicity of TRI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cohort of 161 underground miners who had been highly exposed to dinitrotoluene (DNT) in the copper-mining industry of the former German Democratic Republic was reinvestigated for signs of subclinical renal damage. The study included a screening of urinary proteins excreted by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and quantitations of the specific urinary proteins α 1-microglobulin and glutathione-S-transferase α (GST α) as biomarkers for damage of the proximal tubule and glutathione-S-transferase π (GST π) for damage of the distal tubule. The exposures were categorized semiquantitatively (low, medium, high, and very high), according to the type and duration of professional contact with DNT. A straight dose-dependence of pathological protein excretion patterns with the semiquantitative ranking of DNT exposure was seen. Most of the previously reported cancer cases of the urinary tract, especially those in the higher exposed groups, were confined to pathological urinary protein excretion patterns. The damage from DNT was directed toward the tubular system. In many cases, the appearance of Tamm-Horsfall protein, a 105-kD protein marker, was noted. Data on the biomarkers α 1-microglobulin, GST α, and GST π consistently demonstrated a dose-dependent increase in tubular damage, which confirmed the results of screening by SDS-PAGE and clearly indicated a nephrotoxic effect of DNT under the given conditions of exposure. Within the cluster of cancer patients observed among the DNT-exposed workers, only in exceptional cases were normal biomarker excretions found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Several occupational carcinogens are metabolized by polymorphic enzymes. The distribution of the polymorphic enzymes N-acetyltransferase 2 (NAT2; substrates: aromatic amines), glutathione S-transferase M1 (GSTM1; substrates: e.g., reactive metabolites of polycyclic aromatic hydrocarbons), and glutathione S-transferase T1 (GSTT1; substrates: small molecules with 1-2 carbon atoms) were investigated. Material and Methods: At the urological department in Lutherstadt Wittenberg, 136 patients with a histologically proven transitional cell cancer of the urinary bladder were investigated for all occupations performed for more than 6 months. Several occupational and non-occupational risk factors were asked. The genotypes of NAT2, GSTM1, and GSTT1 were determined from leucocyte DNA by PCR. Results: Compared to the general population in Middle Europe, the percentage of GSTT1 negative persons (22.1 %) was ordinary; the percentage of slow acetylators (59.6%) was in the upper normal range, while the percentage of GSTM1 negative persons (58.8%) was elevated in the entire group. Shifts in the distribution of the genotypes were observed in subgroups who had been exposed to asbestos (6/6 GSTM1 negative, 5/6 slow acetylators), rubber manufacturing (8/10 GSTM1 negative), and chlorinated solvents (9/15 GSTM1 negative). Conclusions: The overrepresentation of GSTM1 negative bladder cancer patients also in this industrialized area and more pronounced in several occupationally exposed subgroups points to an impact of the GSTM1 negative genotype in bladder carcinogenesis. [Article in German]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tobacco use is causally associated with head and neck squamous cell cancer (HNSCC). Here, we present the results of a case-control study that investigated the effects that the genetic variants of the cytochrome (CYP)1A1, CYP1B1, glutathione-S-transferase (GST)M1, GSTT1, and GSTP1 genes have on modifying the risk of smoking-related HNSCC. Allelisms of the CYP1A1, GSTT1, GSTM1, and GSTT1 genes alone were not associated with an increased risk. CYP1B1 codon 432 polymorphism was found to be a putative susceptibility factor in smoking-related HNSCC. The frequency of CYP1B1 polymorphism was significantly higher (P < 0.001) in the group of smoking cases when compared with smoking controls. Additionally, an odds ratio (OR) of 4.53 (2.62-7.98) was discovered when investigating smoking and nonsmoking cases for the susceptible genotype CYP1B1*2/*2, when compared with the presence of the genotype wild type. In combination with polymorphic variants of the GST genes, a synergistic-effect OR was observed. The calculated OR for the combined genotype CYP1B1*2/*2 and GSTM1*2/*2 was 12.8 (4.09-49.7). The calculated OR for the combined genotype was 13.4 (2.92-97.7) for CYP1B1*2/*2 and GSTT1*2/*2, and 24.1 (9.36-70.5) for the combination of CYP1B1*2/*2 and GSTT1-expressors. The impact of the polymorphic variants of the CYP1B1 gene on HNSCC risk is reflected by the strong association with the frequency of somatic mutations of the p53 gene. Smokers with susceptible genotype CYP1B1*2/*2 were 20 times more likely to show evidence of p53 mutations than were those with CYP1B1 wild type. Combined genotype analysis of CYP1B1 and GSTM1 or GSTT1 revealed interactive effects on the occurrence of p53 gene mutations. The results of the present study indicate that polymorphic variants of CYP1B1 relate significantly to the individual susceptibility of smokers to HNSCC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphisms of glutathione transferases (GST) are important genetic determinants of susceptibility to environmental carcinogens (Rebbeck, 1997). The GSTs are a multigene family of dimeric enzymes involved in detoxification, and, in a few cases, the bioactivation of a variety of xenobiotics (Hayes et al., 1995). The cytosolic GST enzyme family consists of four major classes of enzymes, referred to as alpha, mu, pi and theta. Several members of this family (for example, GSTM1, GSTT1 and GSTP1) are polymorphic in human populations (Wormhoudt et al., 1999). Molecular epidemiology studies have examined the role of GST polymorphisms as susceptibility factors for environmentally and/or occupationally induced cancers (Wormhoudt et al., 1999). In particular, case-control studies showed a relationship between the GSTM1 null genotype and the development of cancer in association with smoking habits, which has been shown for cancers of the respiratory and gastrointestinal tracts as well as other cancer types (Miller et al., 1997). Only a few molecular epidemiological studies addressed the role of GSTT1 and GSTP1 polymorphisms in cancer susceptibility. Since GSTP1 is a key player in biotransformation/bioactivation of benzo(a)pyrene, GSTP1 may be even more important than GSTM1 in the prevention of tobacco-induced cancers (Harries et al., 1997; Harris et al., 1998). To date, this relationship has not been sufficiently addressed in humans. Comprehensive molecular epidemiological studies may add to the current knowledge of the role of GST polymorphisms in cancer susceptibility and extent of the knowledge gained from approaches that used phenotyping, such as GSTM1 activity as it relates to trans-stilbene oxide, or polymerase chain reaction (PCR) based genotyping of polymorphic isoenzymes (Bell et al., 1993; Pemble et al., 1994; Harries et al., 1997).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term inhalation studies in rodents have presented unequivocal evidence of experimental carcinogenicity of ethylene oxide, based on the formation of malignant tumors at multiple sites. However, despite a considerable body of epidemiological data only limited evidence has been obtained of its carcinogenicity in humans. Ethylene oxide is not only an important exogenous toxicant, but it is also formed from ethylene as a biological precursor. Ethylene is a normal body constituent; its endogenous formation is evidenced by exhalation in rats and in humans. Consequently, ethylene oxide must also be regarded as a physiological compound. The most abundant DNA adduct of ethylene oxide is 7-(2-hydroxyethyl)guanine (HOEtG). Open questions are the nature and role of tissue-specific factors in ethylene oxide carcinogenesis and the physiological and quantitative role of DNA repair mechanisms. The detection of remarkable individual differences in the susceptibility of humans has promoted research into genetic factors that influence the metabolism of ethylene oxide. With this background it appears that current PBPK models for trans-species extrapolation of ethylene oxide toxicity need to be refined further. For a cancer risk assessment at low levels of DNA damage, exposure-related adducts must be discussed in relation to background DNA damage as well as to inter- and intraindividual variability. In rats, subacute ethylene oxide exposures on the order of 1 ppm (1.83 mg/m3) cause DNA adduct levels (HOEtG) of the same magnitude as produced by endogenous ethylene oxide. Based on very recent studies the endogenous background levels of HOEtG in DNA of humans are comparable to those that are produced in rodents by repetitive exogenous ethylene oxide exposures of about 10 ppm (18.3 mg/m3). Experimentally, ethylene oxide has revealed only weak mutagenic effects in vivo, which are confined to higher doses. It has been concluded that long-term human occupational exposure to low airborne concentrations to ethylene oxide, at or below current occupational exposure limits of 1 ppm (1.83 mg/m3), would not produce unacceptable increased genotoxic risks. However, critical questions remain that need further discussions relating to the coherence of animal and human data of experimental data in vitro vs. in vivo and to species-specific dynamics of DNA lesions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glutathione transferases (GSTs) catalyzing the conjugation of glutathione with electrophilic substrates are important enzymes in the metabolism of xenobiotics. Several isozymes exhibit polymorphisms in humans. The two deletion polymorphisms of hGSTM1 and hGSTT1 result in total loss of enzyme activity in homozygous null genotype (GSTM1*0 and GSTT1*0 respectively) individuals (Seidegård et al. 1988; Pemble et al. 1994). Individuals that are heterozygous for hGSTT1 show distinctly lower enzyme activities than individuals carrying two functional alleles of hGSTT1 (Wiebel et al. 1996). A similar effect is conceivable for the hGSTM1 polymorphism but has not been verified so far.