143 resultados para Gliomas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho mostra o envolvimento do gene RECK no processo de progressão do ciclo celular. Foi verificado que a expressão endógena de RECK é modulada durante a progressão do ciclo celular. A superexpressão de RECK em fibroblastos normais de camundongo promove uma diminuição da capacidade proliferativa das células e um retardo da transição das fases G0/G1-S do ciclo celular. Além disso, os resultados sugerem que um dos possíveis mecanismos de ação de RECK, que promovem este processo, envolve a indução da expressão de um inibidor de CDK, especificamente de p21, e retardo da fosforilação de pRb. Os resultados indicam, ainda, que durante a progressão do ciclo celular a expressão do gene RECK apresenta uma correlação inversa com a expressão do proto-oncogene c-myc. Estes dados corroboram os dados da literatura que mostram RECK como um alvo para o produto de diversos oncogenes, como ras e c-myc. A caracterização da repressão de RECK por c-Myc mostrou que a mesma ocorre ao nível transcricional e que sítios Sp1, presentes no promotor de RECK, são essenciais para a ação de Myc. Dados adicionais sugerem que a repressão de RECK por c-Myc parece envolver mecanismos de desacetilação de histonas. A modulação da expressão de RECK também foi avaliada durante a progressão maligna de tumores do sistema nervoso central (especificamente, gliomas). Foi verificado que a expressão de RECK não é alterada com a progressão deste tipo de tumor. Porém, foi verificado que os pacientes que manifestaram um maior tempo de sobrevida apresentaram tumores com uma significativa maior expressão do gene RECK. Estes dados sugerem que RECK possa ser um possível marcador prognóstico. A caracterização da regulação da expressão de RECK, tanto em células normais como em diferentes tipos de tumores, assim como os alvos moleculares da sua ação, são pontos muito importantes para o entendimento dos mecanismos que controlam a proliferação celular e podem contribuir para o desenvolvimento de novas formas de terapia anti-tumoral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2014-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ßElucidating some molecular mechanisms and biochemistry of brain tumours is an important step towards the development of adjuvant medical therapies. The present study concentrates on cholecystokinin (CCK), a gut-brain peptide that has been described to be able to induce mitosis of rat gliomas as well as hormone secretion by the anterior pituitary, via the CCK-B receptor. The significance of a polymorphism in the growth hormone releasing hormone (GHRH) receptor (GHRH-R) gene was also determined. Finally, defects in the ß-catenin gene, an important component of the developmental pathway, in a sub-set of craniopharyngiomas were investigated. Reverse transcription-polymerase chain reaction (RT-PCR), restriction digestion analysis and direct sequencing demonstrated expression of CCK peptide itself and its A and B receptors by human gliomas, meningiomas and pituitary tumours. CCK peptides stimulated growth of cultured gliomas and meningiomas as well as in vitro hormone secretion [growth hormone (GH), luteinizing hormone (LH) and follicle stimulating hormone (FSH)] by human pituitary tumours. These biological effects were reduced or abolished by CCK antagonists. In addition, an antibody to CCK reduced mitosis by gliomas and meningiomas, and the same antibody inhibited hormone secretion by cultured human pituitary tumours. CCK peptides stimulated phosphatidylinositol (PI) hydrolysis, indicating coupling of the CCK receptors to phopsholipase C. Cyclic AMP was unaffected. In addition, caspase-3 activity was significantly and markedly increased, whilst proteasome activity was decreased. Taken together, these results may indicate an autocrine/paracrine role of CCK in the control of growth and/or functioning of gliomas, meningiomas and pituitary tumours. Primer induced restriction analysis (PIRA) of a rarer and alternative polymorphism in the GHRH-R receptor, in which Thr replaces Ala at codon 57, in human GH-secreting pituitary tumours was investigated. Whilst the rarer form correlated with an increased response of the pituitary cells to GHRH in vitro, allele distribution studies revealed that it is unlikely that the polymorphism contributes to increased risk of developing GH-secreting tumours and therefore acromegaly. Further findings of this study, using PCR and direct sequencing, were the demonstration of an association between b-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that p-catenin mutations may contribute to the initiation and subsequent growth of congenital adamantinomatous craniopharyngiomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic positron emission tomography (PET) imaging can be used to track the distribution of injected radio-labelled molecules over time in vivo. This is a powerful technique, which provides researchers and clinicians the opportunity to study the status of healthy and pathological tissue by examining how it processes substances of interest. Widely used tracers include 18F-uorodeoxyglucose, an analog of glucose, which is used as the radiotracer in over ninety percent of PET scans. This radiotracer provides a way of quantifying the distribution of glucose utilisation in vivo. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue function. As the residue represents the amount of tracer remaining in the tissue, this can be thought of as a survival function; these functions been examined in great detail by the statistics community. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as ow, ux and volume of distribution. This thesis presents a Markov chain formulation of blood tissue exchange and explores how this relates to established compartmental forms. A nonparametric approach to the estimation of the residue is examined and the improvement in this model relative to compartmental model is evaluated using simulations and cross-validation techniques. The reference distribution of the test statistics, generated in comparing the models, is also studied. We explore these models further with simulated studies and an FDG-PET dataset from subjects with gliomas, which has previously been analysed with compartmental modelling. We also consider the performance of a recently proposed mixture modelling technique in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis in human cells by reversibly affecting the phosphorylation of a variety of proteins. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by reversible demethylation and active site binding. Thus far, it is known that overexpression of PME-1 in human gliomas contributes to ERK pathway signaling, cell proliferation, and malignant progression. Whether PME-1-mediated PP2A inhibition promotes therapy resistance in gliomas is unknown. Specific PP2A targets regulated by PME-1 in cancers also remain elusive. Additionally, whether oncogenic function of PME-1 can be generalized to various human cancers needs to be investigated. This study demonstrated that PME-1 expression promotes kinase inhibitor resistance in glioblastoma (GBM). PME-1 silencing sensitized GBM cells to a group of clinically used indolocarbazole multikinase inhibitors (MKIs). To facilitate the quantitative evaluation of MKIs by cancer-cell specific colony formation assay, Image-J software-plugin ‘ColonyArea’ was developed. PME-1-silencing was found to reactivate specific PP2A complexes and affect PP2A-target histone deacetylase HDAC4 activity. The HDAC4 inhibition induced synthetic lethality with MKIs similar to PME-1 depletion. However, synthetic lethality by both approaches required co-expression of a pro-apoptotic protein BAD. In gliomas, PME-1 and HDAC4 expression was associated with malignant progression. Using tumor PME-1, HDAC4 and BAD expression based stratification signatures this study defined patient subgroups that are likely to respond to MKI alone or in combination with HDAC4 inhibitor therapies. In contrast to the oncogenic role of PME-1 in certain cancer types, this study established that colorectal cancer (CRC) patients with high tumor PME-1 expression display favorable prognosis. Interestingly, PME-1 regulated survival signaling did not operate in CRC cells. Summarily, this study potentiates the candidacy of PME-1 as a therapy target in gliomas, but argues against generalization of these findings to other cancers, especially CRC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Saúde Animal, 2011.