935 resultados para Genotyping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pseudomonas aeruginosa is the most common bacterial pathogen in cystic fibrosis (CF) patients. Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. We hypothesized that with coughing, CF subjects produce viable, respirable bacterial aerosols. Methods: Cross-sectional study of 15 children and 13 adults with CF, 26 chronically infected with P. aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different size, and culture of viable Gram negative non-fermentative bacteria. We collected cough aerosols during 5 minutes voluntary coughing and during a sputum induction procedure when tolerated. Standardized quantitative culture and genotyping techniques were used. Results: P. aeruginosa was isolated in cough aerosols of 25 (89%) subjects of whom 22 produced sputum samples. P. aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In 4 cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles ≤ 3.3 microns aerodynamic diameter. P. aeruginosa, Burkholderia cenocepacia Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (P=0.003). The magnitude of cough aerosols were associated with higher FEV1 (r=0.45, P=0.02) and higher quantitative sputum culture results (r=0.58, P=0.008). Conclusion: During coughing, CF patients produce viable aerosols of P. aeruginosa and other Gram negative bacteria of respirable size range, suggesting the potential for airborne transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The C allele of a common polymorphism of the serotonin 2A receptor (HTR2A) gene, T102C, results in reduced synthesis of 5-HT2A receptors and has been associated with current smoking status in adults. The -1438A/G polymorphism, located in the regulatory region of this gene, is in linkage disequilibrium with T102C, and the A allele is associated with increased promoter activity and with smoking in adult males. We investigated the contributions of the HTR2A gene, chronic psychological stress, and impulsivity to the prediction of cigarette smoking status and dependence in young adults. Methods: T102C and -1438A/G genotyping was conducted on 132 healthy Caucasian young adults (47 smokers) who completed self-report measures of chronic stress, depressive symptoms, impulsive personality and cigarette use. Results: A logistic regression analysis of current cigarette smoker user status, after adjusting for gender, depressive symptom severity and chronic stress, indicated that the T102C TT genotype relative to the CC genotype (OR = 7.53), and lower punishment sensitivity (OR = 0.91) were each significant predictive risk factors. However, for number of cigarettes smoked, only lower punishment sensitivity was a significant predictor (OR = 0.81). Conclusions: These data indicate the importance of the T102C polymorphism to tobacco use but not number of cigarettes smoked for Caucasian young adults. Future studies should examine whether this is explained by effects of nicotine on the serotonin system. Lower punishment sensitivity increased risk of both smoking and of greater consumption, perhaps via a reduced sensitivity to cigarette health warnings and negative physiological effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catechol-O-methyl transferase (COMT) encodes an enzyme involved in the metabolism of dopamine and maps to a commonly deleted region that increases schizophrenia risk. A non-synonymous polymorphism (rs4680) in COMT has been previously found to be associated with schizophrenia and results in altered activity levels of COMT. Using a haplotype block-based gene-tagging approach we conducted an association study of seven COMT single nucleotide polymorphisms (SNPs) in 160 patients with a DSM-IV diagnosis of schizophrenia and 250 controls in an Australian population. Two polymorphisms including rs4680 and rs165774 were found to be significantly associated with schizophrenia. The rs4680 results in a Val/Met substitution but the strongest association was shown by the novel SNP, rs165774, which may still be functional even though it is located in intron five. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. This association was slightly improved when males were analysed separately possibly indicating a degree of sexual dimorphism. Our results confirm that COMT is a good candidate for schizophrenia risk, by replicating the association with rs4680 and identifying a novel SNP association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium lentiflavum, a slow-growing nontuberculous mycobacterium, is a rare cause of human disease. It has been isolated from environmental samples worldwide. To assess the clinical significance of M. lentiflavum isolates reported to the Queensland Tuberculosis Control Centre, Australia, during 2001-2008, we explored the genotypic similarity and geographic relationship between isolates from humans and potable water in the Brisbane metropolitan area. A total of 47 isolates from 36 patients were reported; 4 patients had clinically significant disease. M. lentiflavum was cultured from 13 of 206 drinking water sites. These sites overlapped geographically with home addresses of the patients who had clinically significant disease. Automated repetitive sequence-based PCR genotyping showed a dominant environmental clone closely related to clinical strains. This finding suggests potable water as a possible source of M. lentiflavum infection in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emergence and dissemination of community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strains are being reported with increasing frequency in Australia and worldwide. These strains of CA-MRSA are genetically diverse and distinct in Australia. Genotyping of CA-MRSA using eight highly-discriminatory single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring the dissemination of these strains in the community. In this study, a SNP genotyping method was used to investigate the molecular epidemiology of 249 community acquired non-multiresistant MRSA (nm-MRSA) isolates over a 12-month period from routine diagnostic specimens. A real-time PCR for the presence of Panton-Valentine leukocidin (PVL) was also performed on these isolates. The CA-MRSA isolates were sourced from a large private laboratory in Brisbane, Australia that serves a wide geographic region encompassing Queensland and Northern New South Wales. This study identified 16 different STs and 98% of the CA-MRSA isolates were positive for the PVL gene. The most common ST was ST93 with 41% of isolates testing positive for this clone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The World Health Organization recommends that the majority of water monitoring laboratories in the world should test for E. coli daily since thermotolerant coliforms and E. coli are key indicators for risk assessment of recreational waters. Recently, we developed a new SNP method for typing E. coli strains, by which human-specific genotypes were identified. Here, we report the presence of these previously described specific SNP profiles in environmental water, sourced from the Coomera River, located on South East Queensland, Australia, over a period of two years. This study tested for the presence of human-specific E. coli to ascertain whether hydrologic and anthropogenic activity plays a key role in the pollution of the investigated watershed or whether the pollution is from other sources. We found six human-specific SNP profiles and one animal-specific SNP profile consistently across sampling sites and times. We have demonstrated that our SNP genotyping method is able to rapidly identify and characterise human- and animal-specific E. coli isolates in water sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. RESULTS: Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. CONCLUSIONS: The distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococci are important pathogenic bacteria responsible for a range of diseases in humans. The most frequently isolated microorganisms in a hospital microbiology laboratory are staphylococci. The general classification of staphylococci divides them into two major groups; Coagulase-positive staphylococci (e.g. Staphylococcus aureus) and Coagulase-negative staphylococci (e.g. Staphylococcus epidermidis). Coagulase-negative staphylococcal (CoNS) isolates include a variety of species and many different strains but are often dominated by the most important organism of this group, S. epidermidis. Currently, these organisms are regarded as important pathogenic organisms causing infections related to prosthetic materials and surgical wounds. A significant number of S. epidermidis isolates are also resistant to different antimicrobial agents. Virulence factors in CoNS are not very clearly established and not well documented. S. epidermidis is evolving as a resistant and powerful microbe related to nosocomial infections because it has different properties which independently, and in combination, make it a successful infectious agent, especially in the hospital environment. Such characteristics include biofilm formation, drug resistance and the evolution of genetic variables. The purpose of this project was to develop a novel SNP genotyping method to genotype S. epidermidis strains originating from hospital patients and healthy individuals. High-Resolution Melt Analysis was used to assign binary typing profiles to both clinical and commensal strains using a new bioinformatics approach. The presence of antibiotic resistance genes and biofilm coding genes were also interrogated in these isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Known risk factors for secondary lymphedema only partially explain who develops lymphedema following cancer, suggesting that inherited genetic susceptibility may influence risk. Moreover, identification of molecular signatures could facilitate lymphedema risk prediction prior to surgery or lead to effective drug therapies for prevention or treatment. Recent advances in the molecular biology underlying development of the lymphatic system and related congenital disorders implicate a number of potential candidate genes to explore in relation to secondary lymphedema. Methods and Results: We undertook a nested case-control study, with participants who had developed lymphedema after surgical intervention within the first 18 months of their breast cancer diagnosis serving as cases (n=22) and those without lymphedema serving as controls (n=98), identified from a prospective, population-based, cohort study in Queensland, Australia. TagSNPs that covered all known genetic variation in the genes SOX18, VEGFC, VEGFD, VEGFR2, VEGFR3, RORC, FOXC2, LYVE1, ADM and PROX1 were selected for genotyping. Multiple SNPs within three receptor genes, VEGFR2, VEGFR3 and RORC, were associated with lymphedema defined by statistical significance (p<0.05) or extreme risk estimates (OR<0.5 or >2.0). Conclusions: These provocative, albeit preliminary, findings regarding possible genetic predisposition to secondary lymphedema following breast cancer treatment warrant further attention for potential replication using larger datasets.