935 resultados para Genotyping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP. flaAHRManalysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A SNP genotyping method was developed for E. faecalis and E. faecium using the 'Minimum SNPs' program. SNP sets were interrogated using allele-specific real-time PCR. SNP-typing sub-divided clonal complexes 2 and 9 of E. faecalis and 17 of E. faecium, members of which cause the majority of nosocomial infections globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: As recent conflicting reports describe a genetic association between both the C- and the T-alleles of the dopamine D2 receptor (DRD2) C957T polymorphism (rs6277) in alcohol-dependent subjects, our aim was to examine this polymorphism and TaqIA (rs1800497) in Australian alcohol-dependent subjects. METHODS: The C957T polymorphism was genotyped in 228 patients with alcohol dependence (72 females and 156 males) and 228 healthy controls. RESULTS: The C-allele and C/C genotype of C957T was associated with alcohol dependence, whereas the TaqIA polymorphism was not. When analysed separately for C957T, males showed an even stronger association with the C-allele and females showed no association. The C957T and TaqIA haplotyping revealed a strong association with alcohol dependence and a double-genotype analysis (combining C957T and TaqIA genotypes) revealed that the relative risk of different genotypes varied by up to 27-fold with the TT/A1A2 having an 8.5-fold lower risk of alcohol dependence than other genotypes. CONCLUSION: Decreased DRD2 binding associated with the C-allele of the DRD2 C957T polymorphism is likely to be important in the underlying pathophysiology of at least some forms of alcohol dependence, and this effect appears to be limited to males only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10−8). More than 70 prostate cancer susceptibility loci, explaining ~30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Illumina's Infinium SNP BeadChips are extensively used in both small and large-scale genetic studies. A fundamental step in any analysis is the processing of raw allele A and allele B intensities from each SNP into genotype calls (AA, AB, BB). Various algorithms which make use of different statistical models are available for this task. We compare four methods (GenCall, Illuminus, GenoSNP and CRLMM) on data where the true genotypes are known in advance and data from a recently published genome-wide association study. Results In general, differences in accuracy are relatively small between the methods evaluated, although CRLMM and GenoSNP were found to consistently outperform GenCall. The performance of Illuminus is heavily dependent on sample size, with lower no call rates and improved accuracy as the number of samples available increases. For X chromosome SNPs, methods with sex-dependent models (Illuminus, CRLMM) perform better than methods which ignore gender information (GenCall, GenoSNP). We observe that CRLMM and GenoSNP are more accurate at calling SNPs with low minor allele frequency than GenCall or Illuminus. The sample quality metrics from each of the four methods were found to have a high level of agreement at flagging samples with unusual signal characteristics. Conclusions CRLMM, GenoSNP and GenCall can be applied with confidence in studies of any size, as their performance was shown to be invariant to the number of samples available. Illuminus on the other hand requires a larger number of samples to achieve comparable levels of accuracy and its use in smaller studies (50 or fewer individuals) is not recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To describe the changing prevalence of healthcare- and community-associated MRSA. Methods Susceptibility phenotypes of MRSA were observed from 2000 to 2012 using routine susceptibility data. Phenotypic definitions of major clones were validated by genotyping isolates from a nested period prevalence survey in 2011. Results The predominant healthcare-associated (AUS-2/3 like) MRSA phenotype decreased from 42 to 14 isolates per million occasions of service in outpatients (P < 0.0001) and from 650 to 75 isolates per million accrued patient days in inpatients (P 0.0005), while the respective rates of the healthcare-related EMRSA-15 like phenotype increased from 1 to 19 in outpatients (P < 0.0001) and from 11 to 83 in inpatients (P < 0.0001) and those of the community-associated MRSA phenotype increased from 17 to 296 in outpatients (P < 0.0001) and from 71 to 486 in inpatients (P < 0.0001). When compared with single nucleotide polymorphism genotyping the AUS-2/3 like phenotype had a sensitivity and positive predictive value (PPV) for CC239 of 1 and 0.791 respectively, while the EMRSA-15 like phenotype had a sensitivity and PPV for CC22 of 0.903 and 0.774. PVL-positive CA-MRSA, predominantly ST93 and CC30, accounted for 60.8% of MRSA, while PVL-negative CA-MRSA, mainly CC5 and CC1, accounted for 21.4%. Conclusions The initially dominant healthcare-associated MRSA clone has been progressively replaced, mainly by four community-associated lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pneumoniae is a potentially deadly human pathogen associated with high morbidity, mortality and global economic burden. The universally used bacterial genotyping methods are multilocus sequence typing and pulsed field gel electrophoresis. However, another highly discriminatory, rapid and less expensive genotyping technique,multilocus variable number of tandem repeat analysis (MLVA), has been developed. Unfortunately, no universal MLVA protocol exists, and some MLVA protocols do not amplify certain loci for all pneumococcal serotypes, leaving genotyping profiles incomplete. A number of other genotyping or characterization methods have been developed and will be discussed. This review examines the various protocols for genotyping S. pneumoniae and highlights the current direction technology and research is heading to understand this bacterium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Globally, over 800 000 children under five die each year from infectious diseases caused by Streptococcus pneumoniae. To understand genetic relatedness between isolates, study transmission routes, assess the impact of human interventions e.g. vaccines, and determine infection sources, genotyping methods are required. The ‘gold standard’ genotyping method, Multi-Locus Sequence Typing (MLST), is useful for long-term and global studies. Another genotyping method, Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA), has emerged as a more discriminatory, inexpensive and faster technique; however there is no universally accepted method and it is currently suitable for short-term and localised epidemiology studies. Currently Australia has no national MLST database, nor has it adopted any MLVA method for short-term or localised studies. This study aims to improve S. pneumoniae genotyping methods by modifying the existing MLVA techniques to be more discriminatory, faster, cheaper and technically less demanding than previously published MLVA methods and MLST. Methods Four different MLVA protocols, including a modified method, were applied to 317 isolates of serotyped invasive S. pneumoniae isolated from sterile body sites of Queensland children under 15 years from 2007–2012. MLST was applied to 202 isolates for comparison. Results The modified MLVA4 is significantly more discriminatory than the ‘gold standard’ MLST method. MLVA4 has similar discrimination compared to other MLVA techniques in this study). The failure to amplify particular loci in previous MLVA methods were minimised in MLVA4. Failure to amplify BOX-13 and Spneu19 were found to be serotype specific. Conclusion We have modified a highly discriminatory MLVA technique for genotyping Queensland invasive S. pneumoniae. MLVA4 has the ability to enhance our understanding of the pneumococcal epidemiology and the changing genetics of the pneumococcus in localised and short-term studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most genome-wide association studies to date have been performed in populations of European descent, but there is increasing interest in expanding these studies to other populations. The performance of genotyping chips in Asian populations is not well established. Therefore, we sought to test the performance of widely used fixed-marker, genome-wide association studies chips in the Han Chinese population. Non-HapMap Chinese samples (n = 396) were genotyped using the Illumina OmniExpress and Affymetrix 6.0 platforms, whereas a subset also were genotyped using the Immunochip. Genotyped markers from the Affymetrix 6.0 and Illumina OmniExpress were used for full genome imputation based on the HapMap 2 JPT+CHB (Japanese from Tokyo, Japan and Chinese from Beijing, China) reference panel. The concordance between markers genotypes for the three platforms was very high whether directly genotyped or genotyped and imputed single nucleotide polymorphisms (SNPs; .99.8% for directly genotyped and .99.5% for genotyped and imputed SNPs, respectively) were compared. The OmniExpress chip data enabled more SNPs to be imputed, particularly SNPs with minor allele frequency .5%. The OmniExpress chip achieved better coverage of HapMap SNPs than the Affymetrix 6.0 chip (73.6% vs. 65.9%, respectively, for minor allele frequency .5%). The Affymetrix 6.0 and Illumina OmniExpress chip have similar genotyping accuracy and provide similar accuracy of imputed SNPs. The OmniExpress chip however provides better coverage of Asian HapMap SNPs, although its coverage of HapMap SNPs is moderate. © 2013 Jiang et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed and validated a semi-automated fluorescent method of genotyping human leucocyte antigen (HLA)-DRB1 alleles, HLA-DRB1*01-16, by multiplex primer extension reactions. This method is based on the extension of a primer that anneals immediately adjacent to the single-nucleotide polymorphism with fluorescent dideoxynucleotide triphosphates (minisequencing), followed by analysis on an ABI Prism 3700 capillary electrophoresis instrument. The validity of the method was confirmed by genotyping 261 individuals using both this method and polymerase chain reaction with sequence-specific primer (PCR-SSP) or sequencing and by demonstrating Mendelian inheritance of HLA-DRB1 alleles in families. Our method provides a rapid means of performing high-throughput HLA-DRB1 genotyping using only two PCR reactions followed by four multiplex primer extension reactions and PCR-SSP for some allele groups. In this article, we describe the method and discuss its advantages and limitations.