994 resultados para GTPase-Activating Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p120 RasGAP protein negatively regulates Ras via its GAP domain. RasGAP carries several other domains that modulate several signaling molecules such as Rho. RasGAP is also a caspase-3 substrate. One of the caspase-3-generated RasGAP fragments, corresponding to amino acids 158-455 and called fragment N2, was previously reported to specifically sensitize cancer cells to death induced by various anticancer agents. Here, we show that fragment N2 inhibits migration in vitro and that it impairs metastatic progression of breast cancer to the lung. Hence, stress-activated caspase-3 might contribute to the suppression of metastasis through the generation of fragment N2. These results indicate that the activity borne by fragment N2 has a potential therapeutic relevance to counteract the metastatic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La protéine d’échafaudage Gab1 amplifie la signalisation de plusieurs récepteurs à fonction tyrosine kinase (RTK). Entre autres, elle promeut la signalisation du VEGFR2, un RTK essentiel à la médiation de l’angiogenèse via le VEGF dans les cellules endothéliales. En réponse au VEGF, Gab1 est phosphorylé sur tyrosine, ce qui résulte en la formation d’un complexe de protéines de signalisation impliqué dans le remodelage du cytosquelette d’actine et la migration des cellules endothéliales. Gab1 est un modulateur essentiel de l’angiogenèse in vitro et in vivo. Toutefois, malgré l’importance de Gab1 dans les cellules endothéliales, les mécanismes moléculaires impliqués dans la médiation de ses fonctions, demeurent mal définis et la participation du second membre de la famille, Gab2, reste inconnue. Dans un premier temps, nous avons démontré que tout comme Gab1, Gab2 est phosphorylé sur tyrosine, qu’il s’associe de façon similaire avec des protéines de signalisation et qu’il médie la migration des cellules endothéliales en réponse au VEGF. Cependant, contrairement à Gab1, Gab2 n’interagit pas avec le VEGFR2 et n’est pas essentiel pour l’activation d’Akt et la promotion de la survie cellulaire. En fait, nous avons constaté que l’expression de Gab2 atténue l’expression de Gab1 et l’activation de la signalisation médiée par le VEGF. Ainsi, Gab2 semble agir plutôt comme un régulateur négatif des signaux pro-angiogéniques induits par Gab1. La migration cellulaire est une des étapes cruciales de l’angiogenèse. Nous avons démontré que Gab1 médie l’activation de la GTPase Rac1 via la formation et la localisation d’un complexe protéique incluant la GEF VAV2, la p120Caténine et la Cortactine aux lamellipodes des cellules endothéliales en réponse au VEGF. De plus, nous montrons que l’assemblage de ce complexe corrèle avec la capacité du VEGF à induire l’invasion des cellules endothéliales et le bourgeonnement de capillaires, deux phénomènes essentiels au processus angiogénique. La régulation des RhoGTPases est également régulée par des inactivateurs spécifiques les « Rho GTPases activating proteins », ou GAPs. Nous décrivons ici pour la première fois le rôle de la GAP CdGAP dans les cellules endothéliales et démontrons son importance dans la médiation de la signalisation du VEGF via la phosphorylation sur tyrosine de Gab1 et l’activation des RhoGTPases Rac1 et Cdc42. Ainsi, dù à son importance sur l’activation de voies de signalisation du VEGF, CdGAP représente un régulateur crucial de la promotion de diverses activités biologiques essentielles à l’angiogenèse telles que la migration cellulaire, et le bourgeonnement de capillaires in vitro et d’aortes de souris ex vivo. De plus, les embryons de souris CdGAP KO présentent des hémorragies et de l’œdème, et ces défauts vasculaires pourraient être responsables de la mortalité de 44% des souris CdGAP knock-out attendues. Nos études amènent donc une meilleure compréhension des mécanismes moléculaires induits par le VEGF et démontrent l’implication centrale de Gab1 et des régulateurs des RhoGTPases dans la promotion de l’angiogenèse. Cette meilleure compréhension pourrait mener à l’identification de nouvelles cibles ou approches thérapeutiques afin d’améliorer le traitement des patients souffrant de maladies associées à une néovascularisation incontrôlée telles que le cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RGS (regulators of G protein signaling) proteins are GTPase activating proteins that inhibit signaling by heterotrimeric G proteins. All RGS proteins studied to date act on members of the Giα family, but not Gsα or G12α. RGS4 regulates Giα family members and Gqα. RGS2 (G0S8) is exceptional because the G proteins it regulates have not been identified. We report that RGS2 is a selective and potent inhibitor of Gqα function. RGS2 selectively binds Gqα, but not other Gα proteins (Gi, Go, Gs, G12/13) in brain membranes; RGS4 binds Gqα and Giα family members. RGS2 binds purified recombinant Gqα, but not Goα, whereas RGS4 binds either. RGS2 does not stimulate the GTPase activities of Gsα or Giα family members, even at a protein concentration 3000-fold higher than is sufficient to observe effects of RGS4 on Giα family members. In contrast, RGS2 and RGS4 completely inhibit Gq-directed activation of phospholipase C in cell membranes. When reconstituted with phospholipid vesicles, RGS2 is 10-fold more potent than RGS4 in blocking Gqα-directed activation of phospholipase Cβ1. These results identify a clear physiological role for RGS2, and describe the first example of an RGS protein that is a selective inhibitor of Gqα function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins such as the product of the breakpoint cluster region, chimaerin, and the Src homology 3-binding protein 3BP1, are GTPase activating proteins (GAPs) for members of the Rho subfamily of small GTP-binding proteins (G proteins or GTPases). A 200-residue region, named the breakpoint cluster region-homology (BH) domain, is responsible for the GAP activity. We describe here the crystal structure of the BH domain from the p85 subunit of phosphatidylinositol 3-kinase at 2.0 Å resolution. The domain is composed of seven helices, having a previously unobserved arrangement. A core of four helices contains most residues that are conserved in the BH family. Their packing suggests the location of a G-protein binding site. This structure of a GAP-like domain for small GTP-binding proteins provides a framework for analyzing the function of this class of molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ras family of GTPases is a collection of molecular switches that link receptors on the plasma membrane to signaling pathways that regulate cell proliferation and differentiation. The accessory GTPase-activating proteins (GAPs) negatively regulate the cell signaling by increasing the slow intrinsic GTP to GDP hydrolysis rate of Ras. Mutants of Ras are found in 25–30% of human tumors. The most dramatic property of these mutants is their insensitivity to the negative regulatory action of GAPs. All known oncogenic mutants of Ras map to a small subset of amino acids. Gln-61 is particularly important because virtually all mutations of this residue eliminate sensitivity to GAPs. Despite its obvious importance for carcinogenesis, the role of Gln-61 in the GAP-stimulated GTPase activity of Ras has remained a mystery. Our molecular dynamics simulations of the p21ras–p120GAP–GTP complex suggest that the local structure around the catalytic region can be different from that revealed by the x-ray crystal structure. We find that the carbonyl oxygen on the backbone of the arginine finger supplied in trans by p120GAP (Arg-789) interacts with a water molecule in the active site that is forming a bridge between the NH2 group of the Gln-61 and the γ-phosphate of GTP. Thus, Arg-789 may play a dual role in generating the nucleophile as well as stabilizing the transition state for P—O bond cleavage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular reaction mechanism of the GTPase-activating protein (GAP)-catalyzed GTP hydrolysis by Ras was investigated by time resolved Fourier transform infrared (FTIR) difference spectroscopy using caged GTP (P3-1-(2-nitro)phenylethyl guanosine 5′-O-triphosphate) as photolabile trigger. This approach provides the complete GTPase reaction pathway with time resolution of milliseconds at the atomic level. Up to now, one structural model of the GAP⋅Ras⋅GDP⋅AlFx transition state analog is known, which represents a “snap shot” along the reaction-pathway. As now revealed, binding of GAP to Ras⋅GTP shifts negative charge from the γ to β phosphate. Such a shift was already identified by FTIR in GTP because of Ras binding and is now shown to be enhanced by GAP binding. Because the charge distribution of the GAP⋅Ras⋅GTP complex thus resembles a more dissociative-like transition state and is more like that in GDP, the activation free energy is reduced. An intermediate is observed on the reaction pathway that appears when the bond between β and γ phosphate is cleaved. In the intermediate, the released Pi is strongly bound to the protein and surprisingly shows bands typical of those seen for phosphorylated enzyme intermediates. All these results provide a mechanistic picture that is different from the intrinsic GTPase reaction of Ras. FTIR analysis reveals the release of Pi from the protein complex as the rate-limiting step for the GAP-catalyzed reaction. The approach presented allows the study not only of single proteins but of protein–protein interactions without intrinsic chromophores, in the non-crystalline state, in real time at the atomic level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rna1p is the GTPase activating enzyme for Ran/TC4, a Ras-like GTPase necessary for nuclear/cytosolic exchange. Although most wild-type Rna1p is located in the cytosol, we found that the vast majority of the mutant Rna1-1p and, under appropriate physiological conditions, a small portion of the wild-type Rna1p cofractionate with yeast nuclei. Subnuclear fractionation studies show that most of the Rna1p is tightly associated with nuclear components, and that a portion of the active protein can be solubilized by treatments that fail to solubilize inactive Rna1-1p. To learn the precise nuclear locations of the Rna1 proteins, we studied their subcellular distributions in HeLa cells. By indirect immuno-fluorescence we show that wild-type Rna1p has three subcellular locations. The majority of the protein is distributed throughout the cytosol, but a portion of the protein is nucleus-associated, located at both the cytosolic surface and within the nucleoplasm. Mutant Rna1-1p is found at the outer nuclear surface and in the cytosol. We propose that a small pool of the wild-type Rna1p is located in the nuclear interior, supporting the model that the same components of the Ran/TC4 GTPase cycle exist on both sides of the nuclear membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ran/TC4 is an essential, nuclear GTPase implicated in the initiation of DNA replication, entry into and exit from mitosis, and in nuclear RNA and protein transport through the nuclear pore complex. This diversity of functions suggests that Ran interacts with a large number of down-stream targets. Using an overlay assay, we detected a family of putative target proteins that associate with GTP-bound Ran. The sequence of only one such protein, HTF9a/RanBP1, is known. We have now cloned two additional Ran-binding proteins, allowing identification of a distinctive, highly conserved sequence motif of approximately 150 residues. This motif represents a minimal Ran-binding domain that stabilizes the GTP-bound state of Ran. The isolated domain also functions as a coactivator of Ran-GTPase-activating protein. Mutation of a conserved residue within the Ran-binding domain of HTF9a protein drastically reduced Ran binding. Ran-binding proteins coimmunoprecipitated with epitope-tagged Ran from cell lysates, suggesting that these proteins may associate in vivo. A previously uncharacterized Caenorhabditis elegans gene could encode a protein (96 kDa) possessing two Ran-binding domains. This open reading frame also contains similarities to nucleoporins, suggesting a functional link between Ran and nuclear pore complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The novel breast cancer metastasis modulator gene signal-induced proliferation-associated 1 (Sipa1) underlies the breast cancer metastasis efficiency modifier locus Mtes 1 and has been shown to influence mammary tumour metastatic efficiency in the mouse, with an ectopically expressing Sipa1 cell line developing 1.5 to 2 fold more surface pulmonary metastases. Sipa1 encodes a mitogen-inducible GTPase activating (GAP) protein for members of the Ras-related proteins; participates in cell adhesion and modulates mitogen-induced cell cycle progression. Germline SIPA1 SNPs showed association with positive lymph node metastasis and hormonal receptor status in a Caucasian cohort. We hypothesized that SIPA1 may also be correlated to breast carcinoma incidence as well as prognosis. Therefore, this study investigated the potential relationship of SIPA1 and human breast cancer incidence by a germline SNP genotype frequency association study in a case-control Caucasian cohort in Queensland, Australia. Methods The SNPs genotyped in this study were identified in a previous study and the genotyping assays were carried out using TaqMan SNP Genotyping Assays. The data were analysed with chi-square method and the Monte Carlo style CLUMP analysis program. Results Results indicated significance with SIPA1 SNP rs3741378; the CC genotype was more frequently observed in the breast cancer group compared to the disease-free control group, indicating the variant C allele was associated with increased breast cancer incidence. Conclusion This observation indicates SNP rs3741378 as a novel potential sporadic breast cancer predisposition SNP. While it showed association with hormonal receptor status in breast cancer group in a previous pilot study, this exonic missense SNP (Ser (S) to Phe (F)) changes a hydrophilic residue (S) to a hydrophobic residue (F) and may significantly alter the protein functions of SIPA1 in breast tumourgenesis. SIPA1 SNPs rs931127 (5' near gene), and rs746429 (synonymous (Ala (A) to Ala (A)), did not show significant associations with breast cancer incidence, yet were associated with lymph node metastasis in the previous study. This suggests that SIPA1 may be involved in different stages of breast carcinogenesis and since this study replicates a previous study of the associated SNP, it implicates variants of the SIPA1 gene as playing a potential role in breast cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

  锌指蛋白在植物生长发育中具有重要功能,它们可以识别并结合特定的DNA序列进行转录调控,还能够参与蛋白之间相互作用的调节。我们根据锌指蛋白等转录因子特征结构域的序列特点,从来自10 K水稻芯片的EST数据库中筛选出编码58个EST序列。通过对器官表达特异性的比较分析,从中选出七个只在单一器官表达的基因,并对这七个基因的功能进行研究。对其转基因水稻的表型分析发现,C1基因调节水稻的株高和穗的发育;LIM 家族的F9影响小花的形态,主要体现在雌蕊与雄蕊的发育;锌指蛋白S34调控叶倾角的变化;F14基因编码一个核定位的TFIIIA类锌指蛋白,具体功能尚不清楚;锌指蛋白F35转基因水稻主根缩短,侧根数目显著减少。它编码一个推测的ArfGAP (Arf GTPase activating protein),据此我们将其命名为OsAGAP,并对其进行深入研究。   OsAGAP的cDNA全长为1328bp,编码的蛋白由320个氨基酸组成,含有两个保守结构域:锌指结构域和C2 结构域。其中锌指结构域属于CX2CX16CX2C类,即ArfGAP domain的特征结构。GTP酶活性测定试验表明,OsAGAP蛋白能够激活水稻Arf的GTP酶活性,另外,OsAGAP还能够恢复酵母ArfGAP缺失突变体的表型。说明OsAGAP编码的蛋白是水稻中的一个ArfGAP。   OsAGAP在水稻各器官中均有表达,但强弱有所不同。RNA原位杂交结果显示,它在茎尖分生组织与侧生原基及侧根部位表达强烈;它在根尖主要分布于中央维管组织、分生区、皮层细胞,最有趣的是恰好与生长素在根尖极性运输路径相吻合。在亚细胞水平,OsAGAP广泛分布于细胞膜、细胞质、细胞核。   OsAGAP超表达水稻主根、不定根长度缩短,侧根数目显著减少表现出类似于生长素极性运输突变体的表型。其主根伸长对TIBA的抑制作用不敏感,这暗示OsAGAP超表达水稻的生长素极性运输被破坏;另外,其对各种生长素的作用敏感性也发生变化,对IAA、2,4-D的不敏感,而对NAA的反应与野生型一致,根据各类生长素进出细胞机制不同,可以推测超表达水稻的输入能力存在缺陷。极性运输实验结果表明,超表达水稻极性运输能力被破坏;对生长素输入能力的测定进一步表明,超表达水稻根载体的介导的生长素输入能力显著下降。另外,NAA处理能够恢复超表达水稻中侧根发育受抑的表型缺陷。由此可见,OsAGAP在水稻中超表达破坏了生长素极性运输的输入能力。   FM1-43是一类特异标记囊泡运输的荧光染料。经其染色标记后,OsAGAP超表达水稻细胞内囊泡成片聚集,形成“BFA区间”,表现出囊泡运输被破坏的典型特征。透射电镜观察发现,超表达水稻细胞内有大量的小液泡,其中积累了电子密度很高的颗粒物质。由此推测,可能由于细胞的囊泡运输被破坏,导致胞内的代谢物质不能被正常运送或分泌,而在液泡中暂时贮存以维持细胞环境的稳定。   在酵母和动物细胞中的研究表明, ArfGAP是调控囊泡运输的一个重要因子,然而目前还没有关于ArfGAP在植物细胞中生理作用的报道。我们的结果说明,OsAGAP作为的一个ArfGAP,它通过调控水稻中的囊泡运输,而影响了生长素的极性运输,具体表现在对生长素输入能力的调控。由此,我们推测ArfGAP可能在生长素的极性运输中也起着重要的调控作用。   但OsAGAP在拟南芥中却通过调控植株生长素的水平,而影响了转基因拟南芥根的发育。每种生物都有多个ArfGAP,它们之间的分工存在联系,但各不相同。OsAGAP是拟南芥的外源基因,它在拟南芥中可能以不同于水稻的机制起作用。