60 resultados para GSTT1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last four decades have seen a significant increase in the incidence of non-Hodgkin's lymphoma (NHL) as a possible result of increasing environmental carcinogen exposure, particularly pesticides and solvents. Based on the increasing evidence for an association between carcinogen exposure-related cancer risk and xenobiotic gene polymorphisms, we have undertaken a case-control study of xenobiotic gene polymorphisms in individuals with a diagnosis of NHL. Polymorphisms of six xenobiotic genes (CYP1A1, GSTT1, GSTM1, PON1, NAT1, NAT2) were characterized in 169 individuals with NHL and 205 normal controls using polymerase chain reaction-based methods. Polymorphic frequencies were compared using Fisher's exact tests, and odds ratios for NHL risk were calculated. Among the NHL group, the incidence of GSTT1 null and PON1 BB genotypes were significantly increased compared with controls, 34% vs 14%, and 24% vs 11% respectively. Adjusted odds ratios calculated from multivariate analyses demonstrated that GSTT1 null conferred a fourfold increase in NHL risk (OR = 4.27; 95% CI, 2.40-7.61, P < 0.001) and PON1 BB a 2.9-fold increase (OR = 2.92; 95% CI, 1.49-5.72, P = 0.002). Furthermore, GSTT1 null combined with PON1 BB or GSTM1 null conferred an additional risk of NHL. This is the first time that a PON1 gene polymorphism has been shown to be associated with cancer risk. We conclude that the two polymorphisms, GSTT1 null and PON1 BB, are common genetic traits that pose low individual risk but may be important determinants of overall population NHL risk, particularly among groups exposed to NHL-related carcinogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, the biological activation of nephrocarcinogenic chlorinated hydrocarbons proceeds via conjugatiton with glutathione. It has mostly been assamed that the main site of initial conjugation is the liver, followed by a mandatory transfer of intermediates to the kidney. It was therefore of interest to study the enzyme activities of subgroups of glutathione transferases (GSTs) in renal cancers and the surrounding normal renal tissues of the same individuals (n = 21). For genotyping the individuals with respect to known polymorphic GST isozymes the following substrates with differential specificity were used: 1-chloro-2,4-dinitrobenzene for overall GST activity (except GST θ); 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole for GST α; 1,2-dichloro-4-nitro-benzene for GST μ; ethacrynic acid and 4-vinylpyridine for GST π; and methyl chloride for GST θ. In general, the normal tissues were able to metabolize the test substrates. A general decrease in individual GST enzyme activities was apparent in the course of cancerization, and in some (exceptional) cases individual activities, expressed in the normal renal tissue, were lost in the tumour tissue. The GST enzyme activities in tumours were independent of tumour stage, or the age and gender of the patients. There was little influence of known polymorphisms of GSTM1, GSTM3 and GSTP1 upon the activities towards the test substrates, whereas the influence of GSTT1 polymorphism on the activity towads methyl chloride was straightforward. In general, the present findings support the concept that the initial GST-dependent bioactivation step of nephrocarcinogenic chlorinated hydrocarbons may take place in the kidney itself. This should be a consideration in toxicokinetic modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Several occupational carcinogens are metabolized by polymorphic enzymes. The distribution of the polymorphic enzymes N-acetyltransferase 2 (NAT2; substrates: aromatic amines), glutathione S-transferase M1 (GSTM1; substrates: e.g., reactive metabolites of polycyclic aromatic hydrocarbons), and glutathione S-transferase T1 (GSTT1; substrates: small molecules with 1-2 carbon atoms) were investigated. Material and Methods: At the urological department in Lutherstadt Wittenberg, 136 patients with a histologically proven transitional cell cancer of the urinary bladder were investigated for all occupations performed for more than 6 months. Several occupational and non-occupational risk factors were asked. The genotypes of NAT2, GSTM1, and GSTT1 were determined from leucocyte DNA by PCR. Results: Compared to the general population in Middle Europe, the percentage of GSTT1 negative persons (22.1 %) was ordinary; the percentage of slow acetylators (59.6%) was in the upper normal range, while the percentage of GSTM1 negative persons (58.8%) was elevated in the entire group. Shifts in the distribution of the genotypes were observed in subgroups who had been exposed to asbestos (6/6 GSTM1 negative, 5/6 slow acetylators), rubber manufacturing (8/10 GSTM1 negative), and chlorinated solvents (9/15 GSTM1 negative). Conclusions: The overrepresentation of GSTM1 negative bladder cancer patients also in this industrialized area and more pronounced in several occupationally exposed subgroups points to an impact of the GSTM1 negative genotype in bladder carcinogenesis. [Article in German]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tobacco use is causally associated with head and neck squamous cell cancer (HNSCC). Here, we present the results of a case-control study that investigated the effects that the genetic variants of the cytochrome (CYP)1A1, CYP1B1, glutathione-S-transferase (GST)M1, GSTT1, and GSTP1 genes have on modifying the risk of smoking-related HNSCC. Allelisms of the CYP1A1, GSTT1, GSTM1, and GSTT1 genes alone were not associated with an increased risk. CYP1B1 codon 432 polymorphism was found to be a putative susceptibility factor in smoking-related HNSCC. The frequency of CYP1B1 polymorphism was significantly higher (P < 0.001) in the group of smoking cases when compared with smoking controls. Additionally, an odds ratio (OR) of 4.53 (2.62-7.98) was discovered when investigating smoking and nonsmoking cases for the susceptible genotype CYP1B1*2/*2, when compared with the presence of the genotype wild type. In combination with polymorphic variants of the GST genes, a synergistic-effect OR was observed. The calculated OR for the combined genotype CYP1B1*2/*2 and GSTM1*2/*2 was 12.8 (4.09-49.7). The calculated OR for the combined genotype was 13.4 (2.92-97.7) for CYP1B1*2/*2 and GSTT1*2/*2, and 24.1 (9.36-70.5) for the combination of CYP1B1*2/*2 and GSTT1-expressors. The impact of the polymorphic variants of the CYP1B1 gene on HNSCC risk is reflected by the strong association with the frequency of somatic mutations of the p53 gene. Smokers with susceptible genotype CYP1B1*2/*2 were 20 times more likely to show evidence of p53 mutations than were those with CYP1B1 wild type. Combined genotype analysis of CYP1B1 and GSTM1 or GSTT1 revealed interactive effects on the occurrence of p53 gene mutations. The results of the present study indicate that polymorphic variants of CYP1B1 relate significantly to the individual susceptibility of smokers to HNSCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of theta-class glutathione S-transferase (GST) in marmoset monkey liver cytosol was investigated. An anti-peptide antibody targeted against the C-terminus of rGSTT1 reacted with a single band in marmoset liver cytosol that corresponded to a molecular weight of 28 kDa. The intensity of the immunoreactive band was not affected by treatment of marmoset monkeys with 2,3,7,8-tetrachlorodibenzo-p-dioxin, phenobarbitone, rifampicin or clofibric acid. Similarly, activity towards methyl chloride (MC) was unaffected by these treatments. However, GST activity towards 1,2-epoxy3-(p- nitrophenoxy)-propane (EPNP) was increased in marmosets treated with phenobarbitone (2.6-fold) and rifampicin (2.6-fold), activity towards dichloromethane (DCM) was increased by 50% after treatment of marmosets with clofibric acid, and activity towards 1-chloro-2,4-dinitrobenzene (CDNB) was raised slightly (30-42% increases) after treatment with phenobarbitone, rifampicin or clofibric acid. Compared with humans, marmoset liver cytosol GST activity towards DCM was 18-fold higher, activity towards MC was 7 times higher and activity towards CDNB was 4 times higher. Further, EPNP activity was clearly detectable in marmoset liver cytosol samples, but was undetectable in human samples. Immunoreactive marmoset GST was partially purified by affinity chromatography using hexylglutathione-Sepharose and Orange A resin. The interaction of immunoreactive marmoset GST was similar to that found previously for rat and human GSTT1, suggesting that this protein is also a theta class GST. However, unlike rat GSTT1, the marmoset enzyme was not the major catalyst of EPNP conjugation. Instead, immunoreactivity was closely associated with activity towards MC. In conclusion, these results provide evidence for the presence of theta-class GST in the marmoset monkey orthologous to rGSTT1 and hGSTT1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione transferases are known to be important enzymes in the metabolism of xenobiotics. In humans genetic polymorphisms have been reported for the hGSTM1 and hGSTT1 genes leading to individual differences in susceptibility towards toxic effects, such as cancer. This study describes the distribution of the two polymorphisms of hGSTT1 and hGSTM1 in the normal Chinese population of Shanghai. Out of 219 healthy individuals having been genotyped for GSTTI and GSTMI, 108 (49%) were identified to be homozygously deficient for the GSTT1 gene and 107 (49%) for the GSTM1 gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genotype distributions for GSTP1, GSTM1, and GSTT1 were determined in 91 patients with prostatic carcinoma and 135 patients with bladder carcinoma and compared with those in 127 abdominal surgery patients without malignancies. None of the genotypes differed significantly with respect to age or sex among controls or cancer patients. In the group of prostatic carcinoma patients, GSTT1 null allele homozygotes were more prevalent (25% in carcinoma patients vs 13% in controls, Fisher P=0.02, χ2 P = 0.02, OR = 2.31, CI = 1.17-4.59) and the combined M1-/T1-null genotype was also more frequent (9% vs 3%, χ2 P= 0.02, Fisher P = 0.03). Homozygosity for the GSTM1 null allele was more frequent among bladder carcinoma patients (59% in bladder carcinoma patients vs 45% in controls, Fisher P = 0.03, χ2 P = 0.02, OR = 1.76, CI = 1.08-2.88). In contrast to a previous report, no significant increase in the frequency of the GSTP1b allele was found in the tumor patients. Except for the combined GSTM1-/T1-null genotype in prostatic carcinoma, none of the combined genotypes showed a significant association with either of the cancers. These findings suggest that specific single polymorphic GST genes, that is GSTM1 in the case of bladder cancer and GSTT1 in the case of prostatic carcinoma, are most relevant for the development of these urological malignancies among the general population in Central Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cohort of 59 persons with industrial handling of low levels of acrylonitrile is being studied as part of a medical surveillance programme. Previously, an extended haemoglobin adduct monitoring (N-(cyanoethyl)valine and N-(hydroxyethyl)-valine) was performed regarding the glutathione transferases hGSTM1 and hGSTT1 polymorphisms but no influence of hGSTM1 or hGSTT1 polymorphisms on specific adduct levels was found. A compilation of case reports of human accidental poisonings had pointed to significant individual differences in human acrylonitrile metabolism and toxicity. Therefore, a re-evaluation of the industrial cohort included known polymorphisms of the glutathione transferases hGSTM3 and hGSTP1 as well as of the cytochrome P450 CYP2E1. A detailed statistical analysis revealed that exposed carriers of the allelic variants of hGSTP1, hGSTP1*B/hGSTP1*C, characterized by a single nucleotide polymorphism at nucleotide 313 which results in a change from Ile to Val at codon 104, had higher levels of the acrylonitrile-specific haemoglobin adduct N-(cyanoethyl)valine compared to the carriers of the codon 113 alleles hGSTP1*A and hGSTP1*D. The single nucleotide polymorphism at codon 113 of hGSTP1 (hGSTP1*A/hGSTP1*B versus hGSTP1*C/hGSTP1*D) did not show an effect, and also no influence was seen on specific haemoglobin adduct levels of the polymorphisms of hGSTM3 or CYP2E1. The data, therefore, point to a possible influence of a human enzyme polymorphism of the GSTP1 gene at codon 104 on the detoxication of acrylonitrile which calls for experimental toxicological investigation. The study also confirmed the impact of GSTT1 polymorphism on background N-(hydroxyethyl)-valine adduct levels in haemoglobin which are caused by endogenous ethylene oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.