61 resultados para GSTM1


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Risk assessments suggest that intermediate and long-term exposure to triazine herbicides and its metabolites through water can cause severe damage to human health. The objective of this study was to investigate the possible effects of atrazine on Wistar rats submitted to subacute treatment. For this purpose, the activity of catalase and alanine aminotransferase was quantified, and the effect of the herbicide on cell membranes was examined based on the measurement of lipid peroxidation and consequent formation of malondialdehyde and on the mRNA expression of antioxidant enzymes (Mn-superoxide dismutase [SOD] and GSTM1) and connexins. In addition, we evaluated histopathological alterations in the liver, cellular expression of SOD and glutathione (GST), activation of heat shock proteins (HSPs) by immunohistochemistry, and the induction of apoptosis. The genotoxic potential of the herbicide was investigated by the micronucleus test in bone marrow smears. Adult male Wistar rats were treated with an aqueous solution of atrazine at a concentration of 400 mg/kg/day, by gavage, for 14 consecutive days. Control groups were also included. The results showed an increase of catalase levels and maintenance of the expression of antioxidant enzymes (SOD and GST). In addition, lipid peroxidation, hepatic tissue degeneration, activation of HSP90, increased levels of connexin mRNA, and genotoxicity were observed. In conclusion, atrazine induced early hepatic oxidative stress that triggered defense mechanisms to maintain the morphophysiological integrity of the liver. Further studies are needed to better understand the effects of this herbicide on human health. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Atherosclerotic coronary artery disease (CAD) is a multifactorial process that appears to be caused by the interaction of environmental risk factors with multiple predisposing genes. It is nowadays accepted that increased levels of DNA damage induced by xenobiotics play an important role in the early phases of atherogenesis. Therefore, in this study, we focus on determining whether genetic variations in xenobiotic-metabolizing [glutathione-S-transferase theta 1 (GSTT1), glutathione-S-transferase mu 1 (GSTM1), cytochrome P450 IIEI (CYP2E1)] and DNA repair [X-ray cross-complementing group 1 (XRCC1)] genes might be associated with increased risk for CAD. Methods: A case-control study was conducted with 400 individuals who underwent subjected to coronary angiography. A total of 299 were patients diagnosed with effective coronary atherosclerosis (case group; >20% obstructive lesion), and 101 (control group) were individuals diagnosed as negative for CAD (<20% obstructive lesions). The polymorphism identifications for GSTM1 and GSTT1, and for CYP2E1 and XRCC1 genes were performed by polymerase chain reaction (PCR) amplification and by PCR-RFLP, respectively. Results and conclusions: The XRCC1 homozygous wild-type genotype Arg/Arg for codon 399 was statistically less pronounced in the case subjects (21.4%) than in controls (38.5%); individuals with the variant XRCC1 genotype had a 2.3-fold increased risk for coronary atherosclerosis than individuals with the wild-type genotype (OR=2.3, 95% CI=1.13-4.69). Conversely, no association between GSTM1, GSTT1, and CYP2E1gene polymorphisms and coronary atherosclerosis was detected. The results provide evidence of the role of DNA damage and repair in cardiovascular disease. © 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sickle cell anemia (SCA) shows a pathophysiology that involves multiple changes in sickle cell erythrocytes, vaso-occlusive episodes, hemolysis, activation of inflammatory mediators, endothelial cell dysfunction, and oxidative stress. These events complicate treatment and culminate in the development of manifestations such as anemia, pain crises and multiorgan dysfunction. The aim of this study was to evaluate, in SCA patients, oxidative stress and antioxidant capacity markers, correlating them to treatment with hydroxyurea (HU), β-globin haplotypes and glutathione S-transferase polymorphisms (GSTT1, GSTM1 and GSTP1), in comparison to a control group (CG). The study groups were composed of 48 individuals without hemoglobinopathies (CG), SCA patients treated with HU [AF (+HU), N = 13] and untreated SCA patients [AF (-HU), N = 15], after informed consent. The groups were analyzed using cytological, electrophoretic, chromatographic and molecular methods and information from medical records. The GSTM1 and GSTT1 polymorphisms were determined by multiplex PCR, while the GSTP1 polymorphism by PCR-RFLP. Biochemical parameters were measured using spectrophotometric methods [TBARS, TEAC and catalase (CAT) and GST activities] and a chromatographic method [glutathione (GSH)]. The fetal Hb (Hb F) levels observed in the SCA (+HU) group (10.9%) confirmed the already well-described pharmacological effect of HU, but the SCA (-HU) group also had high Hb F levels (6.1%), which may have been influenced by genetic factors not targeted in this study. We found a higher frequency of the Bantu haplotype (48.2%), followed by the Benin (32.1%) and also Cameroon haplotypes, rare in our population, and 19.7% of atypical haplotypes. The presence of Bantu haplotype was related to higher lipid peroxidation levels in patients, but also, it conferred a differential response to HU treatment, raising Hb F levels in 52.6% (P = 0.03). The protective effect of Hb F was confirmed, because the increase in their levels resulted in a 41.3% decrease in lipid peroxidation levels (r = -0.74, P = 0.0156). The genotypic frequency of the GST polymorphisms observed was similar to that of other studies in the Brazilian population, and its association with biochemical markers revealed a significant difference only for the GSTP1 polymorphism, where patients with genotype V/V showed higher GSH and TEAC levels (P = 0.04 and P = 0.03, respectively) compared to patients with genotype I/I. The TBARS levels were about five to eight times higher in the SCA (+HU) and SCA (-HU) groups, respectively, compared to controls, and HU produced a 35.2% decrease in lipid peroxidation levels in the SCA (+HU) group (P < 0.0001). Moreover, the SCA (+HU) group showed higher TEAC levels when compared to CG (P = 0.002). We did not find any significant difference in GST activity between the groups studied (P = 0.76), but CAT activity was about 17 and 30% lower in SCA (+HU) and SCA (-HU) groups, respectively (P < 0.00001). Plasma GSH levels were ~2 times higher in SCA patients than in the control group (P = 0.0005) and showed a positive correlation with TBARS levels, confirming its antioxidant function. HU treatment contributed to higher CAT activity and TEAC levels and lower lipid peroxidation, and its pharmacological effect showed a “haplotype-dependent” response. These findings may contribute to elucidating the potential of HU in ameliorating oxidative stress in SCA subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Susceptibility to acute lymphoblastic leukemia can be highly influenced by genetic polymorphisms in metabolizing enzyme genes of environmental carcinogens. This study aimed to evaluate the impact of the CYP3A5 and NAT2 metabolizing enzyme polymorphisms on the risk of childhood acute lymphoblastic leukemia. The analysis was conducted on 204 ALL patients and in 364 controls from a Brazilian population, using PCR-RFLP. The CYP3A5*3 polymorphic homozygous genotype was more frequent among ALL patients and the *3 allele variant was significantly associated with increased risk of childhood ALL (OR = 0.29; 95% CI, 0.14-0.60). The homozygous polymorphic genotype for the *6 allele variant was extremely rare and found in only two individuals. The heterozygous frequencies were similar for the ALL group and the control group. No significant differences were observed between the groups analyzed regarding NAT2 variant polymorphisms. None of the polymorphisms analyzed was related to treatment outcome. The results suggest that CYP3A5*3 polymorphism may play an important role in the risk of childhood ALL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idiopathic or isolated clubfoot is a common orthopedic birth defect that affects approximately 135,000 children worldwide. It is characterized by equinus, varus and adductus deformities of the ankle and foot. Correction of clubfoot involves months of serial manipulations, castings and bracing, with surgical correction needed in forty percent of cases. Multifactorial etiology has been suggested in numerous studies with both environmental and genetic factors playing an etiologic role. Maternal smoking during pregnancy is the only common environmental factor that has consistently been shown to increase the risk for clubfoot. Moreover, a positive family history of clubfoot and maternal smoking increases the risk of clubfoot twenty fold. These findings suggest that genetic variation in smoking metabolism genes may increase susceptibility to clubfoot. Based on this reasoning, we interrogated eight candidate genes, chosen based on their involvement in phase 1 and 2 cigarette smoke metabolism. Twenty-two SNPs and two null alleles in eight genes (CYP1A1, CYP1A2, CYP1B1, CYP2A6, EPHX1, NAT2, GSTM1 and GSTT1) were genotyped in a dataset composed of nonHispanic white and Hispanic multiplex and simplex families. Only one SNP in CYP1A1, rs1048943, had significantly altered transmission in the aggregate and multiplex NHW datasets (p=0.003 and p=0.009). Perturbation of CYP1A1 by rs1048943 polymorphism causes an increase in the amount of harmful, adduct forming metabolic intermediates. A significant gene interaction between EPHX1 and NAT2 was also found (p=0.007). This interaction may affect the metabolism of harmful metabolic intermediates. Additionally, marginal interactions were found for other xenobiotic genes and these interactions may play a contributory role in clubfoot. Importantly, for CYP1A2, significant maternal (p=0.03; RR=1.24; 95% CI: 1.04-1.44) and fetal (p=0.01; RR=1.33; 95% CI: 1.13-1.54) genotypic effects were identified suggesting that both maternal and fetal genotypes impact normal limb development. No association was found for maternal smoking status and tobacco metabolism genes. Together, these results suggest that xenobiotic metabolism genes may play a contributory role in the etiology of clubfoot regardless of maternal smoking status and may impact foot development through perturbation of tobacco metabolic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Medulloblastoma is a type of brain cancer that accounts for approximately 7-8% of all intracranial tumors and 20-30% of pediatric brain tumors. It is the most common type of malignant brain tumor in childhood. It was reported that majority of survivors with medulloblastoma have social problems, endocrine deficits, and neurological complications. Furthermore, all had significant deficits in neurocognitive functioning. Glutathione S-transferases belong to a family of isoenzymes that catalyze the glutathione conjugation of a variety of electrophilic compounds. ^ Objective. We aimed to determine whether the development of neurocognitive impairment is associated with GST polymorphisms among children and adolescents diagnosed with medulloblastoma (MB) after radiation therapy. ^ Methods. A pilot study composing of 16 children and adolescents diagnosed with MB at Texas Children's Cancer Center was conducted. The t-test was used to determine if the GST polymorphisms were related to neurocognitive impairment and logistic regression was performed to explore association between GST polymorphisms and gender, age at diagnosis, race/ethnicity, and risk group. ^ Results. An association was observed between GSTT1 polymorphism and cognitive impairment one year after radiation and GSTM1 polymorphism two years after radiation. It was observed that patients with GSTT1 null genotype have lower performance IQ (p=0.03) and full scale IQ (p=0.02) one year after radiation and patients with GSTM1 null genotype have lower verbal IQ (p=0.02) two years after radiation. Patients under age 8 have a statistically non-significant higher risk of having not null genotypes compared to those older than age 8 (OR= 7.5, 95%CI: 0.62-90.65 and OR= 2.63, 95%CI: 0.30-23.00 for GSTT1 and GSTM1 respectively). ^ Conclusion. There was a significant association between GSTT1 polymorphism and cognitive impairment one year after radiation and between GSTM1 polymorphism and cognitive impairment two years after radiation. Further large scale studies may be needed to confirm this finding and to examine the underlying mechanism of neurocognitive impairments after treatment of medulloblastoma patients.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Several occupational carcinogens are metabolized by polymorphic enzymes. The distribution of the polymorphic enzymes N-acetyltransferase 2 (NAT2; substrates: aromatic amines), glutathione S-transferase M1 (GSTM1; substrates: e.g., reactive metabolites of polycyclic aromatic hydrocarbons), and glutathione S-transferase T1 (GSTT1; substrates: small molecules with 1 - 2 carbon atoms) were investigated. Material and Methods: At the urological department in Lutherstadt Wittenberg, 136 patients with a histologically proven transitional cell cancer of the urinary bladder were investigated for all occupations performed for more than 6 months. Several occupational and non-occupational risk factors were asked. The genotypes of NAT2, GSTM1, and GSTT1 were determined from leucocyte DNA by PCR. Results: Compared to the general population in Middle Europe, the percentage of GSTT1 negative persons (22.1%) was ordinary; the percentage of slow acetylators (59.6%) was in the upper normal range, while the percentage of GSTM1 negative persons (58.8%) was elevated in the entire group. Shifts in the distribution of the genotypes were observed in subgroups who had been exposed to asbestos (6/6 GSTM1 negative, 5/6 slow acetylators), rubber manufacturing (8/10 GSTM1 negative), and chlorinated solvents (9/15 GSTM1 negative). Conclusions: The overrepresentation of GSTM1 negative bladder cancer patients also in this industrialized area and more pronounced in several occupationally exposed subgroups points to an impact of the GSTM1 negative genotype in bladder carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caucasian renal transplant recipients from Queensland, Australia have the highest non-melanoma skin cancer (NMSC) risk worldwide. Although ultraviolet light (UVR) exposure is critical, genetic factors also appear important. We and others have shown that polymorphism in the glutathione S-transferases (GST) is associated with NMSC in UK recipients. However, the effect of high UVR exposure and differences in immunosuppressive regimen on these associations is unknown. In this study, we examined allelism in GSTM1, GSTM3, GSTT1 and GSTP1 in 361 Queensland renal transplant recipients. Data on squamous (SCC) and basal cell carcinoma (BCC), UVR/tobacco exposure and genotype were obtained. Associations with both NMSC risk and numbers were examined using logistic and negative binomial regression, respectively. In the total group, GSTM1 AB [P = 0.049, rate ratio (RR) = 0.23] and GSTM3 AA (P = 0.015, RR = 0.50) were associated with fewer SCC. Recipients were then stratified by prednisolone dose (less than or equal to7 versus >7 mg/day). In the low-dose group, GSTT1 null (P = 0.006, RR = 0.20) and GSTP1 Val/Val (P = 0.021, RR = 0.20) were associated with SCC numbers. In contrast, in the high-dose group, GSTM1 AB (P = 0.009, RR = 0.05), GSTM3 AB (P = 0.042, RR = 2.29) and BB (P = 0.014, RR = 5.31) and GSTP1 Val/Val (P = 0.036, RR = 2.98) were associated with SCC numbers. GSTM1 AB (P = 0.016) and GSTP1 Val/Val (P = 0.046) were also associated with fewer BCC in this group. GSTP1 associations were strongest in recipients with lower UVR/tobacco exposure. The data confirm our UK findings, suggesting that protection against UVR-induced oxidative stress is important in NMSC development in recipients, but that this effect depends on the immunosuppressant regimen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) results from histologic and gene alterations can lead to a massive cellular proliferation. Most of the authors assume multifactorial causes to CRC genesis. Low physical activity, a fat diet poor in fibers and smoking habits seems to have an important role in CRC. However, there are also genetic causes associated with CRC risk. It has been described that oxidative stress levels could influence CRC development. Thus, cellular balance reactive species and defense enzymes involved in oxidative stress are crucial to maintain a good tissue function and avoid neoplasic process. Therefore, genome variations on these defense enzymes, such as MNSOD, SOD3, GSTP1, GSTT1 and GSTM1, could be important biomarkers to colorectal adenocarcinomas. We intend to determine frequencies distribution of most common polymorphisms involved on oxidative stress regulation (MNSOD, SOD3, GSTP1, GSTT1 and GSTM1) in patients with sporadic colorectal adenocarcinoma (SCA) and in healthy controls, evaluation their possible correlation with SCA risk. Samples common polymorphisms of antioxidant and detoxify genes (MNSOD T175C, SOD3 R213G, GSTP1 A105G, GSTP1 C114T, GSTT1del and GSTM1del) analysis was done by PCR-SSP techniques. In this study we found a higher prevalence of MNSOD 175CC (55% vs 2%; p<0.0001; OR: 58.5; CI 13.3 to 256.7), SOD3 213GG (31% vs 2%; p<0.0001; OR: 21.89; CI 4.93 to 97.29), GSTP1 105GG (46% vs 12%; p<0.0001; OR: 6.14; CI 2.85 to 13.26), GSTP1 114TT (38% vs 0%; p<0.0001; OR: Infinity) and GSTT1 null (75% vs 28%; p<0.0001; OR: 7.71; CI 3.83 to 15.56) mutated genotypes among SCA patients, while the normal genotypes were associated with SCA absence. Furthermore, we found GSTP1 114TT mutated genotype (52% vs 27%; p=0.003; OR: 2.88; CI: 1.41 to 5.89) and GSTT1 null genotype (87% vs 65%; p=0.003; OR: 3.66; CI 1.51 to 8.84) associated with colon samples. These findings suggest a positive association between most of common polymorphisms involved on oxidative stress regulation and SCA prevalence. Dysregulation of MNSOD, SOD3, GSTP1, GSTT1 and GSTM1 genes could be associated with an increase of ROS in colon and rectum tissue and p53 pathway deregulation, induced by oxidative stress on colonic and rectal cells. The present study also provides preliminary evidence that MNSOD 175C, SOD3 213G, GSTP1 105G, GSTP1 114T and GSTT1 null polymorphisms, may be involved in SCA risk and could be useful to clarify this multifactorial disorder.