2 resultados para GRA5


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxoplasma gondii is an intracellular obligate protozoan, which infects humans and warm-blooded animals. The aim of the present study was to clone the rop2, gra5 and gra7 genes from T. gondii RH strain and to produce recombinant proteins. The rop2, gra5 and gra7 gene fragments produced by polymerase chain reaction were cloned into the pET102/D-TOPO(R) vector which contains thioredoxin and polyhistidine tags at the C-and N-ends, respectively, and is expressed in Escherichia coli BL21(DE-3). The expression fusion proteins were found almost entirely in the insoluble form in the cell lysate. These recombinant proteins were purified with an Ni-NTA column. Concentrations of the recombinant antigens produced in the E. coli BL21-star ranged from 300 to 500 mu g/mL growth media, which was used to immunize rabbits. We observed an identity ranging from 96 to 97% when nucleotide sequences were compared to GenBank database sequences. Immunocharacterization of proteins was made by indirect immunofluorescence assay. These proteins will be used for serodiagnosis and vaccination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular parasite Toxoplasma gondii resides within a specialized compartment, the parasitophorous vacuole (PV), that resists fusion with host cell endocytic and lysosomal compartments. The PV is extensively modified by secretion of parasite proteins, including the dense granule protein GRA5 that is specifically targeted to the delimiting membrane of the PV (PVM). We show here that GRA5 is present both in a soluble form and in hydrophobic aggregates. GRA5 is secreted as a soluble form into the PV after which it becomes stably associated with the PVM. Topological studies demonstrated that GRA5 was inserted into the PVM as a transmembrane protein with its N-terminal domain extending into the cytoplasm and its C terminus in the vacuole lumen. Deletion of 8 of the 18 hydrophobic amino acids of the single predicted transmembrane domain resulted in the failure of GRA5 to associate with the PVM; yet it remained correctly packaged in the dense granules and was secreted as a soluble protein into the PV. Collectively, these studies demonstrate that the secretory pathway in Toxoplasma is unusual in two regards; it allows soluble export of proteins containing typical transmembrane domains and provides a mechanism for their insertion into a host cell membrane after secretion from the parasite.