257 resultados para GABAergic interneuron


Relevância:

70.00% 70.00%

Publicador:

Resumo:

GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke in the postsynaptic interneuron a monosynaptic inhibitory synaptic current, followed by a disynaptic excitatory glutamatergic synaptic current. Interneuron-evoked glutamatergic events were blocked by antagonists of either AMPA/kainate or GABA(A) receptors, and could be seen concurrently in both presynaptic and postsynaptic interneurons. These results show that single action potentials in a GABAergic interneuron can drive glutamatergic principal neurons to threshold, resulting in both feedforward and feedback excitation. In interneuron pairs that both receive glutamatergic inputs after an interneuron spike, electrical coupling and bidirectional GABAergic connections occur with a higher probability relative to other interneuron pairs. We propose that this form of GABAergic excitation provides a means for the reliable and specific recruitment of homogeneous interneuron networks in the basal amygdala.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle i et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des ii polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La déficience intellectuelle est la cause d’handicap la plus fréquente chez l’enfant. De nombreuses évidences convergent vers l’idée selon laquelle des altérations dans les gènes synaptiques puissent expliquer une fraction significative des affections neurodéveloppementales telles que la déficience intellectuelle ou encore l’autisme. Jusqu’à récemment, la majorité des mutations associées à la déficience intellectuelle a été liée au chromosome X ou à la transmission autosomique récessive. D’un autre côté, plusieurs études récentes suggèrent que des mutations de novo dans des gènes à transmission autosomique dominante, requis dans les processus de la plasticité synaptique peuvent être à la source d’une importante fraction des cas de déficience intellectuelle non syndromique. Par des techniques permettant la capture de l’exome et le séquençage de l’ADN génomique, notre laboratoire a précédemment reporté les premières mutations pathogéniques dans le gène à transmission autosomique dominante SYNGAP1. Ces dernières ont été associées à des troubles comportementaux tels que la déficience intellectuelle, l’inattention, des problèmes d’humeur, d’impulsivité et d’agressions physiques. D’autres patients sont diagnostiqués avec des troubles autistiques et/ou des formes particulières d’épilepsie généralisée. Chez la souris, le knock-out constitutif de Syngap1 (souris Syngap1+/-) résulte en des déficits comme l’hyperactivité locomotrice, une réduction du comportement associée à l’anxiété, une augmentation du réflexe de sursaut, une propension à l’isolation, des problèmes dans le conditionnement à la peur, des troubles dans les mémoires de travail, de référence et social. Ainsi, la souris Syngap1+/- représente un modèle approprié pour l’étude des effets délétères causés par l’haploinsuffisance de SYNGAP1 sur le développement de circuits neuronaux. D’autre part, il est de première importance de statuer si les mutations humaines aboutissent à l’haploinsuffisance de la protéine. SYNGAP1 encode pour une protéine à activité GTPase pour Ras. Son haploinsuffisance entraîne l’augmentation des niveaux d’activité de Ras, de phosphorylation de ERK, cause une morphogenèse anormale des épines dendritiques et un excès dans la concentration des récepteurs AMPA à la membrane postsynaptique des neurones excitateurs. Plusieurs études suggèrent que l’augmentation précoce de l’insertion des récepteurs AMPA au sein des synapses glutamatergiques contribue à certains phénotypes observés chez la souris Syngap1+/-. En revanche, les conséquences de l’haploinsuffisance de SYNGAP1 sur les circuits neuronaux GABAergiques restent inconnues. Les enjeux de mon projet de PhD sont: 1) d’identifier l’impact de mutations humaines dans la fonction de SYNGAP1; 2) de déterminer si SYNGAP1 contribue au développement et à la fonction des circuits GABAergiques; 3) de révéler comment l’haploinsuffisance de Syngap1 restreinte aux circuits GABAergiques affecte le comportement et la cognition. Nous avons publié les premières mutations humaines de type faux-sens dans le gène SYNGAP1 (c.1084T>C [p.W362R]; c.1685C>T [p.P562L]) ainsi que deux nouvelles mutations tronquantes (c.2212_2213del [p.S738X]; c.283dupC [p.H95PfsX5]). Ces dernières sont toutes de novo à l’exception de c.283dupC, héritée d’un père mosaïque pour la même mutation. Dans cette étude, nous avons confirmé que les patients pourvus de mutations dans SYNGAP1 présentent, entre autre, des phénotypes associés à des troubles comportementaux relatifs à la déficience intellectuelle. En culture organotypique, la transfection biolistique de l’ADNc de Syngap1 wild-type dans des cellules pyramidales corticales réduit significativement les niveaux de pERK, en fonction de l’activité neuronale. Au contraire les constructions plasmidiques exprimant les mutations W362R, P562L, ou celle précédemment répertoriée R579X, n’engendre aucun effet significatif sur les niveaux de pERK. Ces résultats suggèrent que ces mutations faux-sens et tronquante résultent en la perte de la fonction de SYNGAP1 ayant fort probablement pour conséquences d’affecter la régulation du développement cérébral. Plusieurs études publiées suggèrent que les déficits cognitifs associés à l’haploinsuffisance de SYNGAP1 peuvent émerger d’altérations dans le développement des neurones excitateurs glutamatergiques. Toutefois, si, et auquel cas, de quelle manière ces mutations affectent le développement des interneurones GABAergiques résultant en un déséquilibre entre l’excitation et l’inhibition et aux déficits cognitifs restent sujet de controverses. Par conséquent, nous avons examiné la contribution de Syngap1 dans le développement des circuits GABAergiques. A cette fin, nous avons généré une souris mutante knockout conditionnelle dans laquelle un allèle de Syngap1 est spécifiquement excisé dans les interneurones GABAergiques issus de l’éminence ganglionnaire médiale (souris Tg(Nkx2.1-Cre);Syngap1flox/+). En culture organotypique, nous avons démontré que la réduction de Syngap1 restreinte aux interneurones inhibiteurs résulte en des altérations au niveau de leur arborisation axonale et dans leur densité synaptique. De plus, réalisés sur des coupes de cerveau de souris Tg(Nkx2.1-Cre);Syngap1flox/+, les enregistrements des courants inhibiteurs postsynaptiques miniatures (mIPSC) ou encore de ceux évoqués au moyen de l’optogénétique (oIPSC) dévoilent une réduction significative de la neurotransmission inhibitrice corticale. Enfin, nous avons comparé les performances de souris jeunes adultes Syngap1+/-, Tg(Nkx2.1-Cre);Syngap1flox/+ à celles de leurs congénères contrôles dans une batterie de tests comportementaux. À l’inverse des souris Syngap1+/-, les souris Tg(Nkx2.1-Cre);Syngap1flox/+ ne présentent pas d’hyperactivité locomotrice, ni de comportement associé à l’anxiété. Cependant, elles démontrent des déficits similaires dans la mémoire de travail et de reconnaissance sociale, suggérant que l’haploinsuffisance de Syngap1 restreinte aux interneurones GABAergiques dérivés de l’éminence ganglionnaire médiale récapitule en partie certains des phénotypes cognitifs observés chez la souris Syngap1+/-. Mes travaux de PhD établissent pour la première fois que les mutations humaines dans le gène SYNGAP1 associés à la déficience intellectuelle causent la perte de fonction de la protéine. Mes études dévoilent, également pour la première fois, l’influence significative de ce gène dans la régulation du développement et de la fonction des interneurones. D’admettre l’atteinte des cellules GABAergiques illustre plus réalistement la complexité de la déficience intellectuelle non syndromique causée par l’haploinsuffisance de SYNGAP1. Ainsi, seule une compréhension raffinée de cette condition neurodéveloppementale pourra mener à une approche thérapeutique adéquate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons. Stem Cells 2013;31:1868-1880.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La déficience intellectuelle est la cause d’handicap la plus fréquente chez l’enfant. De nombreuses évidences convergent vers l’idée selon laquelle des altérations dans les gènes synaptiques puissent expliquer une fraction significative des affections neurodéveloppementales telles que la déficience intellectuelle ou encore l’autisme. Jusqu’à récemment, la majorité des mutations associées à la déficience intellectuelle a été liée au chromosome X ou à la transmission autosomique récessive. D’un autre côté, plusieurs études récentes suggèrent que des mutations de novo dans des gènes à transmission autosomique dominante, requis dans les processus de la plasticité synaptique peuvent être à la source d’une importante fraction des cas de déficience intellectuelle non syndromique. Par des techniques permettant la capture de l’exome et le séquençage de l’ADN génomique, notre laboratoire a précédemment reporté les premières mutations pathogéniques dans le gène à transmission autosomique dominante SYNGAP1. Ces dernières ont été associées à des troubles comportementaux tels que la déficience intellectuelle, l’inattention, des problèmes d’humeur, d’impulsivité et d’agressions physiques. D’autres patients sont diagnostiqués avec des troubles autistiques et/ou des formes particulières d’épilepsie généralisée. Chez la souris, le knock-out constitutif de Syngap1 (souris Syngap1+/-) résulte en des déficits comme l’hyperactivité locomotrice, une réduction du comportement associée à l’anxiété, une augmentation du réflexe de sursaut, une propension à l’isolation, des problèmes dans le conditionnement à la peur, des troubles dans les mémoires de travail, de référence et social. Ainsi, la souris Syngap1+/- représente un modèle approprié pour l’étude des effets délétères causés par l’haploinsuffisance de SYNGAP1 sur le développement de circuits neuronaux. D’autre part, il est de première importance de statuer si les mutations humaines aboutissent à l’haploinsuffisance de la protéine. SYNGAP1 encode pour une protéine à activité GTPase pour Ras. Son haploinsuffisance entraîne l’augmentation des niveaux d’activité de Ras, de phosphorylation de ERK, cause une morphogenèse anormale des épines dendritiques et un excès dans la concentration des récepteurs AMPA à la membrane postsynaptique des neurones excitateurs. Plusieurs études suggèrent que l’augmentation précoce de l’insertion des récepteurs AMPA au sein des synapses glutamatergiques contribue à certains phénotypes observés chez la souris Syngap1+/-. En revanche, les conséquences de l’haploinsuffisance de SYNGAP1 sur les circuits neuronaux GABAergiques restent inconnues. Les enjeux de mon projet de PhD sont: 1) d’identifier l’impact de mutations humaines dans la fonction de SYNGAP1; 2) de déterminer si SYNGAP1 contribue au développement et à la fonction des circuits GABAergiques; 3) de révéler comment l’haploinsuffisance de Syngap1 restreinte aux circuits GABAergiques affecte le comportement et la cognition. Nous avons publié les premières mutations humaines de type faux-sens dans le gène SYNGAP1 (c.1084T>C [p.W362R]; c.1685C>T [p.P562L]) ainsi que deux nouvelles mutations tronquantes (c.2212_2213del [p.S738X]; c.283dupC [p.H95PfsX5]). Ces dernières sont toutes de novo à l’exception de c.283dupC, héritée d’un père mosaïque pour la même mutation. Dans cette étude, nous avons confirmé que les patients pourvus de mutations dans SYNGAP1 présentent, entre autre, des phénotypes associés à des troubles comportementaux relatifs à la déficience intellectuelle. En culture organotypique, la transfection biolistique de l’ADNc de Syngap1 wild-type dans des cellules pyramidales corticales réduit significativement les niveaux de pERK, en fonction de l’activité neuronale. Au contraire les constructions plasmidiques exprimant les mutations W362R, P562L, ou celle précédemment répertoriée R579X, n’engendre aucun effet significatif sur les niveaux de pERK. Ces résultats suggèrent que ces mutations faux-sens et tronquante résultent en la perte de la fonction de SYNGAP1 ayant fort probablement pour conséquences d’affecter la régulation du développement cérébral. Plusieurs études publiées suggèrent que les déficits cognitifs associés à l’haploinsuffisance de SYNGAP1 peuvent émerger d’altérations dans le développement des neurones excitateurs glutamatergiques. Toutefois, si, et auquel cas, de quelle manière ces mutations affectent le développement des interneurones GABAergiques résultant en un déséquilibre entre l’excitation et l’inhibition et aux déficits cognitifs restent sujet de controverses. Par conséquent, nous avons examiné la contribution de Syngap1 dans le développement des circuits GABAergiques. A cette fin, nous avons généré une souris mutante knockout conditionnelle dans laquelle un allèle de Syngap1 est spécifiquement excisé dans les interneurones GABAergiques issus de l’éminence ganglionnaire médiale (souris Tg(Nkx2.1-Cre);Syngap1flox/+). En culture organotypique, nous avons démontré que la réduction de Syngap1 restreinte aux interneurones inhibiteurs résulte en des altérations au niveau de leur arborisation axonale et dans leur densité synaptique. De plus, réalisés sur des coupes de cerveau de souris Tg(Nkx2.1-Cre);Syngap1flox/+, les enregistrements des courants inhibiteurs postsynaptiques miniatures (mIPSC) ou encore de ceux évoqués au moyen de l’optogénétique (oIPSC) dévoilent une réduction significative de la neurotransmission inhibitrice corticale. Enfin, nous avons comparé les performances de souris jeunes adultes Syngap1+/-, Tg(Nkx2.1-Cre);Syngap1flox/+ à celles de leurs congénères contrôles dans une batterie de tests comportementaux. À l’inverse des souris Syngap1+/-, les souris Tg(Nkx2.1-Cre);Syngap1flox/+ ne présentent pas d’hyperactivité locomotrice, ni de comportement associé à l’anxiété. Cependant, elles démontrent des déficits similaires dans la mémoire de travail et de reconnaissance sociale, suggérant que l’haploinsuffisance de Syngap1 restreinte aux interneurones GABAergiques dérivés de l’éminence ganglionnaire médiale récapitule en partie certains des phénotypes cognitifs observés chez la souris Syngap1+/-. Mes travaux de PhD établissent pour la première fois que les mutations humaines dans le gène SYNGAP1 associés à la déficience intellectuelle causent la perte de fonction de la protéine. Mes études dévoilent, également pour la première fois, l’influence significative de ce gène dans la régulation du développement et de la fonction des interneurones. D’admettre l’atteinte des cellules GABAergiques illustre plus réalistement la complexité de la déficience intellectuelle non syndromique causée par l’haploinsuffisance de SYNGAP1. Ainsi, seule une compréhension raffinée de cette condition neurodéveloppementale pourra mener à une approche thérapeutique adéquate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names.We sought to automatically classify digitally reconstructed interneuronal morphologies according tothis scheme. Simultaneously, we sought to discover possible subtypes of these types that might emergeduring automatic classification (clustering). We also investigated which morphometric properties weremost relevant for this classification.Materials and methods: A set of 118 digitally reconstructed interneuronal morphologies classified into thecommon basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of theworld?s leading neuroscientists, quantified by five simple morphometric properties of the axon and fourof the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. Wethen removed this class information for each type separately, and applied semi-supervised clustering tothose cells (keeping the others? cluster membership fixed), to assess separation from other types and lookfor the formation of new groups (subtypes). We performed this same experiment unlabeling the cells oftwo types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixtureof Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performedthe described experiments on three different subsets of the data, formed according to how many expertsagreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least26 (47 neurons).Results: Interneurons with more reliable type labels were classified more accurately. We classified HTcells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy,respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, andno subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette widthand ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively,confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a singletype also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometricproperties were more relevant that dendritic ones, with the axonal polar histogram length in the [pi, 2pi) angle interval being particularly useful.Conclusions: The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heteroge-neous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones fordistinguishing among the CB, HT, LB, and MA interneuron types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At rest, the primary motor cortex (M1) exhibits spontaneous neuronal network oscillations in the beta (15–30 Hz) frequency range, mediated by inhibitory interneuron drive via GABA-A receptors. However, questions remain regarding the neuropharmacological basis of movement related oscillatory phenomena, such as movement related beta desynchronisation (MRBD), post-movement beta rebound (PMBR) and movement related gamma synchronisation (MRGS). To address this, we used magnetoencephalography (MEG) to study the movement related oscillatory changes in M1 cortex of eight healthy participants, following administration of the GABA-A modulator diazepam. Results demonstrate that, contrary to initial hypotheses, neither MRGS nor PMBR appear to be GABA-A dependent, whilst the MRBD is facilitated by increased GABAergic drive. These data demonstrate that while movement-related beta changes appear to be dependent upon spontaneous beta oscillations, they occur independently of one other. Crucially, MRBD is a GABA-A mediated process, offering a possible mechanism by which motor function may be modulated. However, in contrast, the transient increase in synchronous power observed in PMBR and MRGS appears to be generated by a non-GABA-A receptor mediated process; the elucidation of which may offer important insights into motor processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Myopia is a common eye disorder affecting up to 90% of children in South East Asia and 30% of the population worldwide. Myopia of high severity is a leading cause of blindness around the world (4th to 5th most common). Changes and remodelling of the sclera i.e. increase cellular proliferation & increase protein synthesis within scleral cells (↑ scleral DNA) and thinning and lose of extracellular matrix of sclera (↓ scleral GAG synthesis) have been linked to myopic eye growth in animal models. Signals acting on the sclera are thought to originate in the retina, and are modulated by the retinal pigment epithelium (RPE) with limited evidence suggesting that the RPE can modify scleral cell growth in culture. However, the mechanism of retinal signal transmission and the role of posterior eye cup tissue, including the RPE, in mediating changes in scleral fibroblast growth during myopia development are unclear. Retinal transmitter systems are critically involved in pathways regulating eye growth, which ultimately lead to alterations in the sclera if eye size is to change. A dopaminergic agonist and muscarinic antagonists decrease the proliferation of scleral chondrocytes when co-cultured with chick’s retinal pigment epithelium (RPE). GABA receptors have recently been localised to chick sclera. We therefore hypothesised that posterior eye cup tissue from myopic eyes would stimulate and from hyperopic eyes would inhibit growth of scleral fibroblasts in vitro and that GABAergic agents could directly interact with scleral cells or indirectly modify the effects of myopic and hyperopic posterior eye cup tissue on scleral fibroblast growth. Method: Fibroblastic cells obtained from 8-day-old chick sclera were used to establish cell banks. Two major experiments were performed. Experiment 1: To determine if posterior eye cup tissues from myopic eye stimulates and hyperopic eye inhibits scleral cell proliferation, when co-cultured with scleral cells in vitro. This study comprised two linked experiments, i) monocular visual treatments of FDM (form-deprivation myopia), LIM (lens-induced myopia) and LIH (lens-induced hyperopia) with assessment of the effect of full punch eye cup tissue on DNA and GAG synthesis by cultured chick scleral fibroblasts, and ii) binocular visual treatments comprising LIM and LIH with assessment of the effect of individual layers of eye cup tissues (neural retina, RPE and choroid) on cultured chick scleral fibroblasts. Visual treatment was applied for 3 days. Experiment 2: To determine the direct interaction of GABA agents on scleral cell growth and to establish whether GABA agents modify the stimulatory/inhibitory effect of myopic and hyperopic posterior eye cup tissues on cultured scleral cell growth in vitro. Two linked experiments were performed. i) GABA agonists (muscimol and baclofen) and GABA antagonists (bicuculine (-), CGP46381 and TPMPA) were added to scleral cell culture medium to determine their direct effect on scleral cells. ii) GABAergic agents (agonists and antagonists) were administered to scleral fibroblasts co-cultured with posterior eye cup tissue (retina, RPE, retina/RPE, RPE/choroid). Ocular tissues were obtained from chick eyes wearing +15D (LIH) or -15D lenses (LIM) for 3 days. In both experiments, tissues were added to hanging cell culture insert (pore size 1.0ìm) placed over each well of 24 well plates while scleral cells were cultured in DMEM/F12, Glutamax (Gibco) plus 10% FBS and penicillin/streptomycin (50U/ml)) and fungizone (1.25ug/ml) (Gibco), at seeding density of 30,000 cells/well at the bottom of the well and allowed to grow for 3 days. Scleral cells proliferation rate throughout the study was evaluated by determining GAG and DNA content of scleral cells using Dimethylmethylene blue (DMMB) dye and Quant-iTTm Pico Green® dsDNA reagent respectively. Results and analysis: Based on DNA and GAG content, there was no significant difference in tissue effect of LIM and LIH eyes on scleral fibroblast growth (DNA: 8.4 ± 1.1μg versus 9.3 ± 2.3 μg, p=0.23; GAG: 10.13 ± 1.4 μg versus 12.67 ± 1.2 μg, F2,23=6.16, p=0.0005) when tissues were obtained from monocularly treated chick eyes (FDM or +15D lens or -15D lens over right eyes with left eyes untreated) and co-cultured as full punch. When chick eyes were treated binocularly with -15D lens (LIM) right eye and +15D lens (LIH) left eyes and tissue layers were separated, the retina from LIM eyes did not stimulate scleral cell proliferation compared to LIH eyes (DNA: 27.2 ± 6.7 μg versus 23.2 ± 1.5 μg, p=0.23; GAG: 28.1 ±3.7 μg versus 28.7 ± 4.2 μg, p=0.21). Similarly, the LIH and LIM choroid did not produce a differential effect based on DNA (LIM 46.9 ± 6.4 μg versus LIH 53.5 ± 4.7 μg, p=0.18), however the choroid from LIH eyes induced higher scleral GAG content than from LIM eyes (32.5 ± 6.7 μg versus 18.9 ± 1.2 μg, p=0.023). In contrast, the RPE from LIM eyes caused a significant increase in fibroblast proliferation whereas the RPE from LIH eyes was relatively inhibitory (72.4 ± 6.3 μg versus 27.9 ± 2.3 μg, F1, 6=69.99, p=0.0005). GAG data were opposite to DNA data e.g. the RPE from LIH eyes increased (33.7 ± 7.9 μg) while the RPE from LIM eyes decreased (28.2 ± 3.0 μg) scleral cell growth (F1, 6=13.99, p=0.010). Based on DNA content, GABA agents had a small direct effect on scleral cell growth; GABA agonists increased (21.4 ± 1.0% and 18.3 ± 1.0% with muscimol and baclofen, p=0.0021), whereas GABA antagonists decreased fibroblast proliferation (-23.7 ± 0.9% with bicuculine & CGP46381 and -28.1 ± 0.5% with TPMPA, p=0.0004). GABA agents also modified the effect of LIM and LIH tissues (p=0.0005).The increase in proliferation rate of scleral fibroblasts co-cultured with tissues (RPE, retina, RPE/retina and RPE/choroid) from LIM treated eyes was enhanced by GABA agonists (muscimol: 27.4 ± 1.2%, 35.8 ± 1.6%, 8.4 ± 0.3% and 11.9 ± 0.6%; baclofen: 27.0 ± 1.0%, 15.8 ± 1.5%, 16.8 ± 1.2% and 15.4 ± 0.4%, p=0.014) whereas GABA antagonists further reduced scleral fibroblasts growth (bicuculine: -52.5 ± 2.5%, -36.9 ± 1.4%, -37.5 ± 0.6% and -53.7 ± 0.9%; TPMPA: 57.3 ± 1.3%, -15.7 ± 1.2%, -33.5 ± 0.4% and -45.9 ± 1.5%; CGP46381: -51.9 ± 1.6%, -28.5 ± 1.5%, -25.4 ± 2.0% and -45.5 ± 1.9% respectively, p=0.0034). GAG data were opposite to DNA data throughout the experiment e.g. GABA agonists further inhibited while antagonists relatively enhanced scleral fibroblasts growth for both LIM and LIH tissue co-culture. The effect of GABA agents was relatively lower (p=0.0004) for tissue from LIH versus LIM eyes but was in a similar direction. There was a significant drug effect on all four tissue types e.g. RPE, retina, RPE/retina and RPE/choroid for both LIM and LIH tissue co-culture (F20,92=3.928, p=0.0005). However, the effect of GABA agents was greatest in co-culture with RPE tissue (F18,36=4.865, p=0.0005). Summary and Conclusion: 1) Retinal defocus signals are transferred to RPE and choroid which then exert their modifying effect on scleral GAG and DNA synthesis either through growth stimulating factors or directly interacting with scleral cells in process of scleral remodeling during LIM and LIH visual conditions. 2) GABAergic agents affect the proliferation of scleral fibroblasts both directly and when co-cultured with ocular tissues in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravitreal injections of GABA antagonists, dopamine agonists and brief periods of normal vision have been shown separately to inhibit form-deprivation myopia (FDM). Our study had three aims: (i) establish whether GABAergic agents modify the myopia protective effect of normal vision, (ii) investigate the receptor sub-type specificity of any observed effect, and (iii) consider an interaction with the dopamine (DA) system. Prior to the period of normal vision GABAergic agents were applied either (i) individually, (ii) in combination with other GABAergic agents (an agonist with an antagonist), or (iii) in combination with DA agonists and antagonists. Water injections were given to groups not receiving drug treatments so that all experimental eyes received intravitreal injections. As shown previously, constant form-deprivation resulted in high myopia and when diffusers were removed for 2 h per day the period of normal vision greatly reduced the FDM that developed. GABA agonists inhibited the protective effect of normal vision whereas antagonists had the opposite effect. GABAA/C agonists and D2 DA antagonists when used in combination were additive in suppressing the protective effect of normal vision. A D2 DA agonist restored some of the protective effect of normal vision that was inhibited by a GABA agonist (muscimol). The protective effect of normal vision against form-deprivation is modifiable by both the GABAergic and DAergic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: GABA antagonists inhibit experimental myopia in chick and GABA receptors have been localized to chick sclera and the retinal pigment epithelium (RPE). The RPE and the choroid alter scleral DNA and glycosaminoglycan (GAG) content in vitro; opposite effects have been observed for tissues from myopic and hyperopic eyes. The aim was to determine the effect of GABAergic agents on the DNA and GAG content of chick scleral fibroblasts directly and in co-culture with ocular tissues from myopic and hyperopic chick eyes. Materials and Methods: Primary cultures of fibroblastic cells expressing vimentin and α-smooth muscle actin were established. GABAergic agents were added separately (i) to the culture medium of the scleral cells and (ii) to the culture medium of the scleral cells with the addition of posterior eye cup tissue (retina, RPE, retina + RPE, choroid + RPE) to cell culture inserts. Ocular tissues were obtained from chick eyes wearing + 15D (lens-induced hyperopia, LIH) or −15D lenses (lens-induced myopia, LIM) for three days (post-hatch day 5–8) (n = 12). GAG and DNA content of scleral fibroblasts were measured. Results: GABA agents had a small direct effect on scleral cell GAG and DNA content but a larger effect was measured when GABA agents were added to the culture medium with myopic and hyperopic RPE and choroid + RPE tissues. GABA agonists increased (p = 0.002) whereas antagonists decreased (p = 0.0004) DNA content of scleral cells; effects were opposite for scleral GAG content. GABA agents significantly altered the effect of both LIM and LIH tissues (p = 0.0005) compared to control; the effects were greater for LIM tissue versus LIH tissue co-culture (p = 0.0004). Conclusion: GABAergic agents affect the DNA and GAG content of scleral fibroblasts both directly and when co-cultured with ocular tissues. GABA antagonists that prevent myopia development in chick model could act via a scleral mechanism utilizing the RPE/choroid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory fear conditioning is dependent on auditory signaling from the medial geniculate (MGm) and the auditory cortex (TE3) to principal neurons of the lateral amygdala (LA). Local circuit GABAergic interneurons are known to inhibit LA principal neurons via fast and slow IPSP's. Stimulation of MGm and TE3 produces excitatory post-synaptic potentials in both LA principal and interneurons, followed by inhibitory post-synaptic potentials. Manipulations of D1 receptors in the lateral and basal amygdala modulate the retrieval of learned association between an auditory CS and foot shock. Here we examined the effects of D1 agonists on GABAergic IPSP's evoked by stimulation of MGm and TE3 afferents in vitro. Whole cell patch recordings were made from principal neurons of the LA, at room temperature, in coronal brain slices using standard methods. Stimulating electrodes were placed on the fiber tracts medial to the LA and at the external capsule/layer VI border dorsal to the LA to activate (0.1-0.2mA) MGm and TE3 afferents respectively. Neurons were held at -55.0 mV by positive current injection to measure the amplitude of the fast IPSP. Changes in input resistance and membrane potential were measured in the absence of current injection. Stimulation of MGm or TE3 afferents produced EPSP's in the majority of principal neurons and in some an EPSP/IPSP sequence. Stimulation of MGm afferents produced IPSP's with amplitudes of -2.30 ± 0.53 mV and stimulation of TE3 afferents produced IPSP's with amplitudes of -1.98 ± 1.26 mV. Bath application of 20μM SKF38393 increased IPSP amplitudes to -5.94 ± 1.62 mV (MGm, n=3) and-5.46 ± 0.31 mV (TE3, n=3). Maximal effect occurred <10mins. A small increase in resting membrane potential and decrease in input resistance were observed. These data suggest that DA modulates both the auditory thalamic and auditory cortical inputs to the LA fear conditioning circuit via local GABAergic circuits. Supported by NIMH Grants 00956, 46516, and 58911.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.