234 resultados para Forearm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results: Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions: Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design: Case Study Series.---------- Introduction: Restriction of forearm rotation may be required for effective management and rehabilitation of the upper limb after trauma.---------- Purpose of the Study: To compare the effectiveness of four splints in restricting forearm rotation.---------- Methods: Muenster, Sugartong, antipronation distal radioulnar joint (DRUJ), and standard wrist splints were fabricated for five healthy participants. Active range of motion (AROM) in forearm pronation and supination was measured with a goniometer for each splint, at the initial point of sensory feedback and during exertion of maximal force.---------- Results: Repeated-measures analysis of variance indicated significant differences between splints for all four AROM measures. Post hoc paired t-tests showed that the Sugartong splint was significantly more restrictive in pronation than the Muenster splint. The antipronation DRUJ splint provided significantly greater restriction in pronation than the standard wrist splint. No splints immobilized the forearm completely.---------- Conclusions: The Sugartong splint is recommended for maximal restriction in pronation, but individual patient characteristics require consideration in splint choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Forearm fractures affect 1.7 million individuals worldwide each year and most occur earlier in life than hip fractures. While the heritability of forearm bone mineral density (BMD) and fracture is high, their genetic determinants are largely unknown. Aim To identify genetic variants associated with forearm BMD and forearm fractures. Methods BMD at distal radius, measured by dualenergy x-ray absorptiometry, was tested for association with common genetic variants. We conducted a metaanalysis of genome-wide association studies for BMD in 5866 subjects of European descent and then selected the variants for replication in 715 Mexican American samples. Gene-based association was carried out to supplement the single-nucleotide polymorphism (SNP) association test. We then tested the BMD-associated SNPs for association with forearm fracture in 2023 cases and 3740 controls. Results We found that five SNPs in the introns of MEF2C were associated with forearm BMD at a genome-wide significance level (p<5×10-8) in meta-analysis (lead SNP, rs11951031[T] -0.20 SDs per allele, p=9.01×10-9). The gene-based association test suggested an association between MEF2C and forearm BMD ( p=0.003). The association between MEF2C variants and risk of fracture did not achieve statistical significance (SNP rs12521522[A]: OR=1.14 (95% CI 0.92 to 1.35), p=0.14). Meta-analysis also revealed two genome-wide suggestive loci at CTNNA2 and 6q23.2. Conclusions These findings demonstrate that variants at MEF2C were associated with forearm BMD, implicating this gene in the determination of BMD at forearm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the surface electromyogram response of six forearm muscles to falls onto the outstretched hand. The extensor carpi radialis longus, extensor carpi radialis brevis, extensor carpi ulnaris, abductor pollicis longus, flexor carpi radialis and flexor carpi ulnaris muscles were sampled from eight volunteers who underwent ten self-initiated falls. All muscles initiated prior to impact. Co-contraction is the most obvious surface electromyogram feature. The predominant response is in the radial deviators. The surface electromyogram timing we recorded would appear to be a complex anticipatory response to falling modified by the ef- fect on the forearm muscles following impact. The mitigation of the force of impact is probably more importantly through shoulder abduction and extension and elbow flexion rather than action of the forearm muscles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical mathematical model for friction between a fabric strip and the volar forearm has been developed and validated experimentally. The model generalizes the common assumption of a cylindrical arm to any convex prism, and makes predictions for pressure and tension based on Amontons' law. This includes a relationship between the coefficient of static friction (mu) and forces on either end of a fabric strip in contact with part of the surface of the arm and perpendicular to its axis. Coefficients of friction were determined from experiments between arm phantoms of circular and elliptical cross-section (made from Plaster of Paris covered in Neoprene) and a nonwoven fabric. As predicted by the model, all values of mu calculated from experimental results agreed within +/- 8 per cent, and showed very little systematic variation with the deadweight, geometry, or arc of contact used. With an appropriate choice of coordinates the relationship predicted by this model for forces on either end of a fabric strip reduces to the prediction from the common model for circular arms. This helps to explain the surprisingly accurate values of mu obtained by applying the cylindrical model to experimental data on real arms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Interhemispheric inhibition (IHI) is typically examined via responses elicited in intrinsic hand muscles. As the cortical representations of proximal and distal muscles in the upper limb are distinguished in terms of their inter-hemispheric projections, we sought to determine whether the IHI parameters established for the hand apply more generally.

METHODS: We investigated IHI at 5 different conditioning stimulus (CS) intensities and a range of short-latency inter-stimulus intervals (ISIs) in healthy participants. Conditioning and test stimuli were delivered over the M1 representation of the right and left flexor carpi radialis respectively.

RESULTS: IHI increased as a function of CS intensity, and was present for ISIs between 7 and 15ms. Inhibition was most pronounced for the 10ms ISI at all CS intensities.

CONCLUSIONS: The range of parameters for which IHI is elicited in projections to the forearm is similar to that reported for the hand. The specific utility lies in delineation of stimulus parameters that permit both potentiation and attenuation of IHI to be assessed.

SIGNIFICANCE: In light of evidence that there is a greater density of callosal projections between cortical areas that represent proximal muscles than between those corresponding to distal limb muscles, and in view of the assumption that variations in functional connectivity to which such differences give rise may have important implications for motor behavior, it is critical to determine whether processes mediating the expression of IHI depend on the effector that is studied. This issue is of further broad significance given the practical utility of movements generated by muscles proximal to the wrist in the context of upper limb rehabilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to analyze the forearm muscular contraction levels associated to the use of anti-vibration gloves, by comparing the contraction levels with gloves and without gloves. Two different vibration tools were used in a simulated work environment: (1) A compact Duty Multi-Cutter Bosch and (2) and a Percussion Drill with a drill bit Ø20 mm. Standard operations were performed by each subject in the following materials: (1) Performing cross- sectional cuts in 80x40 mm pine section and (2) performing 20 mm diameter holes in a concrete slab 2 x 2 m, 70 mm thick. The forearm contraction level were measured by surface electromyography in four different muscles: Flexor Digitorum Superficialis (FDS), Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis Longus (ECRL) e Extensor Carpi Ulnaris (ECU). For the flexor muscles (FDS, FCU), an increase tendency in muscular contraction was observed when the operations are performed without gloves (2-5% MVE increase in the FDS and 3-9% MVE increase in the FCU). For the extensor muscles ECU a decrease tendency in muscular contraction was observed when the operations are performed without gloves (1-10% MVE decrease). Any tendency was found in the ECRL muscle. ECU was the muscle with the highest contraction level for 79% and 71% of the operators, during the operations respectively with the multi-cutter (P50= 27-30%MVE) and with the percussion drill (P50=46-55%MVE). As a final conclusion from this study, anti- vibration gloves may increase the forearm fatigue in the posterior region of the forearm (ECU muscle) during operations with the mentioned tools

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between local and reflexive control of skin blood flow (SkBF) is unclear. This thesis isolated the roles of rectal (Tre) and local (Tloc) temperature on forearm SkBF regulation at normal and elevated body temperatures, and to investigate the interaction between local and reflexive SkBF control. While either normothermic (Tre ~37.0°C) or hyperthermic (∆Tre +1.1°C), SkBF was assessed on the dorsal aspect of each forearm in 10 participants while Tloc was manipulated in an A-B-A-B fashion between neutral (33.0°C) and hot (38.5°C). Finally, local heating to 44°C was performed to elicit maximal SkBF. Data are presented as a percentage of maximal cutaneous vascular conductance (CVC), calculated as laser-Doppler flux divided by mean arterial pressure. Tloc manipulations performed during normothermia had significantly greater effects on CVC than during hyperthermia. The decreased modification to SkBF from the Tloc changes during hyperthermia suggests that strong reflexive vasodilation attenuates local SkBF control mechanisms.