994 resultados para Food Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research investigated the micronutrient intakes of Irish pre-school children (1-4 years) and adults (18-64 years) and the role that fortified foods (FFs) play in the diets of these population groups. Dietary intake data were collected as part of the National Pre-school Nutrition Survey (NPNS) (2010-2011) and the National Adult Nutrition Survey (NANS) (2008-2010) using 4-day food and beverage records. Nutrient intakes were estimated using WISP©, which encompasses McCance and Widdowson’s The Composition of Foods and the Irish Food Composition Database. A FF is one in which one or more micronutrients are added. Key dietary sources of micronutrients in NPNS and NANS were “milk”, “meat & meat products”, “breakfast cereals”, “fruit & fruit juices” and “breads”. In general, intakes of most micronutrients were adequate with the exception of iron (1 year old children and adult women) and vitamin D (in all population groups). Small proportions of the pre-school population had intakes which exceeded the upper level (UL) (zinc: 11%, folic acid: 5%, retinol: 4%, copper: 2%). Less than 2% of adults had intakes of iron, copper, zinc and vitamin B6 which exceeded the UL. FFs were consumed by 97% of pre-school children and 82% of adults, representing 17% and 9% of mean daily energy intake respectively. Relative to energy intake, FFs contributed substantially greater proportions to intakes of key micronutrients, such as iron and vitamin D. FFs were effective in reducing the prevalence of inadequate micronutrient intakes in these population groups, particularly for iron in women and 1 year old children. FFs made a significant contribution to folate intake in women of childbearing age (72µg). FFs contributed greater proportions of carbohydrate and lower proportions of fat to the diets of consumers. Voluntary addition of nutrients to foods did not contribute appreciably to intakes exceeding the UL in these population groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study aimed to investigate interactions of components in the high solids systems during storage. The systems included (i) lactose–maltodextrin (MD) with various dextrose equivalents at different mixing ratios, (ii) whey protein isolate (WPI)–oil [olive oil (OO) or sunflower oil (SO)] at 75:25 ratio, and (iii) WPI–oil– {glucose (G)–fructose (F) 1:1 syrup [70% (w/w) total solids]} at a component ratio of 45:15:40. Crystallization of lactose was delayed and increasingly inhibited with increasing MD contents and higher DE values (small molecular size or low molecular weight), although all systems showed similar glass transition temperatures at each aw. The water sorption isotherms of non-crystalline lactose and lactose–MD (0.11 to 0.76 aw) could be derived from the sum of sorbed water contents of individual amorphous components. The GAB equation was fitted to data of all non-crystalline systems. The protein–oil and protein–oil–sugar materials showed maximum protein oxidation and disulfide bonding at 2 weeks of storage at 20 and 40°C. The WPI–OO showed denaturation and preaggregation of proteins during storage at both temperatures. The presence of G–F in WPI–oil increased Tonset and Tpeak of protein aggregation, and oxidative damage of the protein during storage, especially in systems with a higher level of unsaturated fatty acids. Lipid oxidation and glycation products in the systems containing sugar promoted oxidation of proteins, increased changes in protein conformation and aggregation of proteins, and resulted in insolubility of solids or increased hydrophobicity concomitantly with hardening of structure, covalent crosslinking of proteins, and formation of stable polymerized solids, especially after storage at 40°C. We found protein hydration transitions preceding denaturation transitions in all high protein systems and also the glass transition of confined water in protein systems using dynamic mechanical analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fungal spoilage is the most common type of microbial spoilage in food leading to significant economical and health problems throughout the world. Fermentation by lactic acid bacteria (LAB) is one of the oldest and most economical methods of producing and preserving food. Thus, LAB can be seen as an interesting tool in the development of novel bio-preservatives for food industry. The overall objective of this study was to demonstrate, that LAB can be used as a natural way to improve the shelf-life and safety of a wide range of food products. In the first part of the thesis, 116 LAB isolates were screened for their antifungal activity against four Aspergillus and Penicillium spp. commonly found in food. Approximately 83% of them showed antifungal activity, but only 1% showed a broad range antifungal activity against all tested fungi. The second approach was to apply LAB antifungal strains in production of food products with extended shelf-life. L. reuteri R29 strain was identified as having strong antifungal activity in vitro, as well as in sourdough bread against Aspergillus niger, Fusarium culmorum and Penicillium expansum. The ability of the strain to produce bread of good quality was also determined using standard baking tests. Another strain, L. amylovorus DSM19280, was also identified as having strong antifungal activity in vitro and in vivo. The strain was used as an adjunct culture in a Cheddar cheese model system and demonstrated the inhibition of P. expansum. Significantly, its presence had no detectable negative impact on cheese quality as determined by analysis of moisture, salt, pH, and primary and secondary proteolysis. L. brevis PS1 a further strain identified during the screening as very antifungal, showed activity in vitro against common Fusarium spp. and was used in the production of a novel functional wortbased alcohol-free beverage. Challenge tests performed with F. culmorum confirmed the effectiveness of the antifungal strain in vivo. The shelf-life of the beverage was extended significantly when compared to not inoculated wort sample. A range of antifungal compounds were identified for the 4 LAB strains, namely L. reuteri ee1p, L. reuteri R29, L. brevis PS1 and L. amylovorous DSM20531. The identification of the compounds was based on liquid chromatography interfaced to the mass spectrometer and PDA detector

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Irish monitoring data on PCDD/Fs, DL-PCBs and Marker PCBs were collated and combined with Irish Adult Food Consumption Data, to estimate dietary background exposure of Irish adults to dioxins and PCBs. Furthermore, all available information on the 2008 Irish pork dioxin food contamination incident was collated and analysed with a view to evaluate any potential impact the incident may have had on general dioxin and PCB background exposure levels estimated for the adult population in Ireland. The average upperbound daily intake of Irish adults to dioxins Total WHO TEQ (2005) (PCDD/Fs & DLPCBs) from environmental background contamination, was estimated at 0.3 pg/kg bw/d and at the 95th percentile at 1 pg/kg bw/d. The average upperbound daily intake of Irish adults to the sum of 6 Marker PCBs from environmental background contamination ubiquitous in the environment was estimated at 1.6 ng/kg bw/d and at the 95th percentile at 6.8 ng/kg bw/d. Dietary background exposure estimates for both dioxins and PCBs indicate that the Irish adult population has exposures below the European average, a finding which is also supported by the levels detected in breast milk of Irish mothers. Exposure levels are below health based guidance values and/or Body Burdens associated with the TWI (for dioxins) or associated with a NOAEL (for PCBs). Given the current toxicological knowledge, based on biomarker data and estimated dietary exposure, general background exposure of the Irish adult population to dioxins and PCBs is of no human health concern. In 2008, a porcine fat sample taken as part of the national residues monitoring programme led to the detection of a major feed contamination incidence in the Republic of Ireland. The source of the contamination was traced back to the use of contaminated oil in a direct-drying feed operation system. Congener profiles in animal fat and feed samples showed a high level of consistency and pinpointed the likely source of fuel contamination to be a highly chlorinated commercial PCB mixture. To estimate additional exposure to dioxins and PCBs due to the contamination of pig and cattle herds, collection and a systematic review of all data associated with the contamination incident was conducted. A model was devised that took into account the proportion of contaminated product reaching the final consumer during the 90 day contamination incident window. For a 90 day period, the total additional exposure to Total TEQ (PCDD/F &DL-PCB) WHO (2005) amounted to 407 pg/kg bw/90d at the 95th percentile and 1911 pg/kg bw/90d at the 99th percentile. Exposure estimates derived for both dioxins and PCBs showed that the Body Burden of the general population remained largely unaffected by the contamination incident and approximately 10 % of the adult population in Ireland was exposed to elevated levels of dioxins and PCBs. Whilst people in this 10 % cohort experienced quite a significant additional load to the existing body burden, the estimated exposure values do not indicate approximation of body burdens associated with adverse health effects, based on current knowledge. The exposure period was also limited in time to approximately 3 months, following the FSAI recall of contaminated meat immediately on detection of the contamination. A follow up breast milk study on Irish first time mothers conducted in 2009/2010 did not show any increase in concentrations compared to the study conducted in 2002. The latter supports the conclusion that the majority of the Irish adult population was not affected by the contamination incident.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The principal objective of this thesis was to investigate the ability of reversible optical O2 sensors to be incorporated into food/beverage packaging systems to continuously monitor O2 levels in a non-destructive manner immediately postpackaging and over time. Residual levels of O2 present in packs can negatively affect product quality and subsequently, product shelf-life, especially for O2-sensitive foods/beverages. Therefore, the ability of O2 sensors to continuously monitor O2 levels present within food/beverage packages was considered commercially relevant in terms of identifying the consequences of residual O2 on product safety and quality over time. Research commenced with the development of a novel range of O2 sensors based on phosphorescent platinum and palladium octaethylporphyrin-ketones (OEPk) in nano-porous high density polyethylene (HDPE), polypropylene (PP) polytetrafluoroethylene (PTFE) polymer supports. Sensors were calibrated over a temperature range of -10°C to +40°C and deemed suitable for food and beverage packaging applications. This sensor technology was used and demonstrated itself effective in determining failures in packaging containment. This was clearly demonstrated in the packaging of cheese string products. The sensor technology was also assessed across a wide range of packaged products; beer, ready-to-eat salad products, bread and convenience-style, muscle-based processed food products. The O2 sensor technology performed extremely well within all packaging systems. The sensor technology adequately detected O2 levels in; beer bottles prior to and following pasteurisation, modified atmosphere (MA) packs of ready-to-eat salad packs as respiration progressed during product storage and MA packs of bread and convenience-style muscle-based products as mycological growth occurred in food packs over time in the presence and absence of ethanol emitters. The use of the technology, in conjunction with standard food quality assessment techniques, showed remarkable usefulness in determining the impact of actual levels of O2 on specific quality attributes. The O2 sensing probe was modified, miniaturised and automated to screen for the determination of total aerobic viable counts (TVC) in several fish species samples. The test showed good correlation with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness with respect to variation of key assay parameters (probe concentration and pipetting volume). Overall, the respirometric fish TVC test was simple to use, possessed a dynamic microbial range (104-107 cfu/g sample), had an accuracy of +/- one log(cfu/g sample) and was rapid. Its ability to assess highly perishable products such as fish for total microbial growth in <12 hr demonstrates commercial potential.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In rural Ethiopia, among other things, lack of adequate financial service is considered as the basic problem to alleviate rural poverty and to solve the problem of food insecurity. Commercial banks are restricted to urban centres. Providing rural financial service through RUSACCO to the poor has been proposed as a tool for economic development and for achieving food security. Evidence from research in this regard has been so far scanty, especially in rural Ethiopia. The aims of this study are to analyze the determinants of membership, to identify socioeconomic and demographic factors that influence members’ participation in RUSACCOs and to quantify the impact of RUSACCOs on member households’ food security. The study was conducted in two purposely selected woredas in the Amhara region one from food insecure (Lay Gayint woreda) and the other from food secure (Dejen woreda). Six RUSACCOs were selected randomly from these two woredas. Both qualitative and quantitative data were collected. Key informant interviews, focus group discussions and survey techniques were used to collect primary data. Collected data was then analyzed using mixed methods depending on the nature of data. For quantitative data analysis appropriate statistical models were used. The study result reveals that the number of members in each RUSACCO is very small. However, the majority of non-member respondents are willing to join RUSACCO. Lack of information about the benefits of RUSACCO membership is the main problem why many rural poor do not join RUSACCOs. Members participate in different aspects of the cooperatives, starting from attending general assembly up to board membership. They also participate actively in saving and borrowing activities of RUSACCO. The majority of the respondents believe the RUSACCO is a vital instrument in combating food insecurity. The empirical findings indicate that gender, marital status, occupation, educational level, participation in local leadership and participation in other income generation means determine the decision of rural poor to join a RUSACCO or not. The amount of saving is determined by household head occupation, farming experience and income level. While age of household head, primary occupation, farming experience, date of membership, annual total consumption expenditure, amount of saving and participation in other income generation activities influence members’ amount of borrowing by RUSACCO members. Finally, the study confirms that RUSACCO participation improves household food security. RUSACCO membership has made positive impact on household total consumption expenditure and food expenditure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Flavour release from food is determined by the binding of flavours to other food ingredients and the partition of flavour molecules among different phases. Food emulsions are used as delivery systems for food flavours, and tailored structuring in emulsions provides novel means to better control flavour release. The current study investigated four structured oil-in-water emulsions with structuring in the oil phase, oil-water interface, and water phase. Oil phase structuring was achieved by the formation of monoglyceride (MG) liquid crystals in the oil droplets (MG structured emulsions). Structured interface was created by the adsorption of a whey protein isolate (WPI)-pectin double layer at the interface (multilayer emulsion). Water phase structured emulsions referred to emulsion filled protein gels (EFP gels), where emulsion droplets were embedded in WPI gel network, and emulsions with maltodextrins (MDs) of different dextrose-equivalent (DE) values. Flavour compounds with different physicochemical properties were added into the emulsions, and flavour release (release rate, headspace concentration and air-emulsion partition coefficient) was described by GC headspace analysis. Emulsion structures, including crystalline structure, particle size, emulsion stability, rheology, texture, and microstructures, were characterized using differential scanning calorimetry and X-ray diffraction, light scattering, multisample analytical centrifuge, rheometry, texture analysis, and confocal laser scanning microscopy, respectively. In MG structured emulsions, MG self-assembled into liquid crystalline structures and stable β-form crystals were formed after 3 days of storage at 25 °C. The inclusion of MG crystals allowed tween 20 stabilized emulsions to present viscoelastic properties, and it made WPI stabilized emulsions more sensitive to the change of pH and NaCl concentrations. Flavour compounds in MG structured emulsions had lower initial headspace concentration and air-emulsion partition coefficients than those in unstructured emulsions. Flavour release can be modulated by changing MG content, oil content and oil type. WPI-pectin multilayer emulsions were stable at pH 5.0, 4.0, and 3.0, but they presented extensive creaming when subjected to salt solutions with NaCl ≥ 150 mM and mixed with artificial salivas. Increase of pH from 5.0 to 7.0 resulted in higher headspace concentration but unchanged release rate, and increase of NaCl concentration led to increased headspace concentration and release rate. The study also showed that salivas could trigger higher release of hydrophobic flavours and lower release of hydrophilic flavours. In EFP gels, increases in protein content and oil content contributed to gels with higher storage modulus and force at breaking. Flavour compounds had significantly reduced release rates and air-emulsion partition coefficients in the gels than the corresponding ungelled emulsions, and the reduction was in line with the increase of protein content. Gels with stronger gel network but lower oil content were prepared, and lower or unaffected release rates of the flavours were observed. In emulsions containing maltodextrins, water was frozen at a much lower temperature, and emulsion stability was greatly improved when subjected to freeze-thawing. Among different MDs, MD DE 6 offered the emulsion the highest stability. Flavours had lower air-emulsion partition coefficients in the emulsions with MDs than those in the emulsion without MD. Moreover, the involvement of MDs in the emulsions allowed most flavours had similar release profiles before and after freeze-thaw treatment. The present study provided information about different structured emulsions as delivery systems for flavour compounds, and on how food structure can be designed to modulate flavour release, which could be helpful in the development of functional foods with improved flavour profile.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quinoa (Chenopodium quinoa) is a seed crop native to the Andes, that can be used in a variety of food product in a similar manner to cereals. Unlike most plants, quinoa contains protein with a balanced amino acid profile. This makes it an interesting raw material for e.g. dairy product substitutes, a growing market in Europe and U.S. Quinoa can however have unpleasant off-flavours when processed into formulated products. One means of improving the palatability is seed germination. Also, the increased activities of hydrolytic enzymes can have a beneficial influence in food processing. In this thesis, the germination pattern of quinoa was studied, and the influence of quinoa malt was evaluated in a model product. Additionally, to explore its potential for dairy-type products, quinoa protein was isolated from an embryo-enriched milling fraction of non-germinated quinoa and tested for functional and gelation properties. Quinoa seeds imbibed water very rapidly, and most seeds showed radicle protrusion after 8-9 h. The α-amylase activity was very low, and started to increase only after 24 hours of germination in the starchy perisperm. Proteolytic activity was very high in dry ungerminated seeds, and increased slightly over 24 h. A significant fraction of this activity was located in the micropylar endosperm. The incorporation of germinated quinoa in gluten-free bread had no significant effect on the baking properties due to low α-amylase activity. Upon acidification with glucono-δ-lactone, quinoa milk formed a structured gel. The gelation behaviour was further studied using a quinoa protein isolate (QPI) extracted from an embryoenriched milling fraction. QPI required a heat-denaturation step to form gel structures. The heating pH influenced the properties drastically: heating at pH 10.5 led to a dramatic increase in solubility, emulsifying properties, and a formation of a fine-structured gel with a high storage modulus (G') when acidified. Heating at pH 8.5 varied very little from the unheated protein in terms of functional properties, and only formed a randomly aggregated coagulum with a low G'. Further study of changes over the course of heating showed that the mechanism of heat-denaturation and aggregation indeed varied largely depending on pH. The large difference in gelation behaviour may be related to the nature of aggregates formed during heating. To conclude, germination for increased enzyme activities may not be feasible, but the structure-forming properties of quinoa protein could possibly be exploited in dairy-type products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper deals with use of a food grade coagulant (guar gum) as a replacement for synthetic coagulants for potable water treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of the current study was to evaluate the effect of a debriefing call on nutrient intake estimates using two 3-d food diaries among women participating in the Women's Health and Interview Study (WISH) Diet Validation Study. Subjects were 207 women with complete data and six 24-h recalls (24-HR) by telephone over 8 mo followed by two 3-d food diaries during the next 4 mo. Nutrient intake was assessed using the food diaries before and after a debriefing session by telephone. The purpose of the debriefing call was to obtain more detailed information on the types and amounts of fat in the diet. However, due to the ubiquitous nature of fat in the diet, the debriefing involved providing more specific detail on many aspects of the diet. There was a significant difference in macronutrient and micronutrient intake estimates after the debriefing. Estimates of protein, carbohydrate, and fiber intake were significantly higher and total fat, monounsaturated fat, saturated fat, vitamin A, vitamin C, -tocopherol, folic acid, and calcium intake were significantly lower after the debriefing (P <0.05). The limits of agreement between the food diaries before and after the debriefing were especially large for total fat intake, which could be under- or overestimated by 15 g/d. The debriefing call improved attenuation coefficients associated with measurement error for vitamin C, folic acid, iron, tocopherol, vitamin A, and calcium estimates. A hypothetical relative risk (RR) = 2.0 could be attenuated to 1.16 for folic acid intake assessed without a debriefing but to only 1.61 with a debriefing. Depending on the nutrients of interest, the inclusion of a debriefing can reduce the potential attenuation of RR in studies evaluating diet disease associations.