960 resultados para Folding and refolding proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes the total chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein (GFP). The molecule is made up of 238 amino acid residues in a single polypeptide chain and is nonfluorescent. To carry out the synthesis, a procedure, first described in 1981 for the synthesis of complex peptides, was used. The procedure is based on performing segment condensation reactions in solution while providing maximum protection to the segment. The effectiveness of the procedure has been demonstrated by the synthesis of various biologically active peptides and small proteins, such as human angiogenin, a 123-residue protein analogue of ribonuclease A, human midkine, a 121-residue protein, and pleiotrophin, a 136-residue protein analogue of midkine. The GFP precursor molecule was synthesized from 26 fully protected segments in solution, and the final 238-residue peptide was treated with anhydrous hydrogen fluoride to obtain the precursor molecule of GFP containing two Cys(acetamidomethyl) residues. After removal of the acetamidomethyl groups, the product was dissolved in 0.1 M Tris⋅HCl buffer (pH 8.0) in the presence of DTT. After several hours at room temperature, the solution began to emit a green fluorescence (λmax = 509 nm) under near-UV light. Both fluorescence excitation and fluorescence emission spectra were measured and were found to have the same shape and maxima as those reported for native GFP. The present results demonstrate the utility of the segment condensation procedure in synthesizing large protein molecules such as GFP. The result also provides evidence that the formation of the chromophore in GFP is not dependent on any external cofactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaperone rings play a vital role in the opposing ATP-mediated processes of folding and degradation of many cellular proteins, but the mechanisms by which they assist these life and death actions are only beginning to be understood. Ring structures present an advantage to both processes, providing for compartmentalization of the substrate protein inside a central cavity in which multivalent, potentially cooperative interactions can take place between the substrate and a high local concentration of binding sites, while access of other proteins to the cavity is restricted sterically. Such restriction prevents outside interference that could lead to nonproductive fates of the substrate protein while it is present in non-native form, such as aggregation. At the step of recognition, chaperone rings recognize different motifs in their substrates, exposed hydrophobicity in the case of protein-folding chaperonins, and specific “tag” sequences in at least some cases of the proteolytic chaperones. For both folding and proteolytic complexes, ATP directs conformational changes in the chaperone rings that govern release of the bound polypeptide. In the case of chaperonins, ATP enables a released protein to pursue the native state in a sequestered hydrophilic folding chamber, and, in the case of the proteases, the released polypeptide is translocated into a degradation chamber. These divergent fates are at least partly governed by very different cooperating components that associate with the chaperone rings: that is, cochaperonin rings on one hand and proteolytic ring assemblies on the other. Here we review the structures and mechanisms of the two types of chaperone ring system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The empirical observation that homologous proteins fold to similar structures is used to enhance the capabilities of an ab initio algorithm to predict protein conformations. A penalty function that forces homologous proteins to look alike is added to the potential and is employed in the coupled energy optimization of several homologous proteins. Significant improvement in the quality of the computed structures (as compared with the computational folding of a single protein) is demonstrated and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A group of resident ER proteins have been identified that are proposed to function as molecular chaperones. The best characterized of these is BiP/GRP78, an hsp70 homologue that binds peptides containing hydrophobic residues in vitro and unfolded or unassembled proteins in vivo. However, evidence that mammalian BiP plays a direct role in protein folding remains circumstantial. In this study, we examine how BiP interacts with a particular substrate, immunoglobulin light chain (lambda LC), during its folding. Wild-type hamster BiP and several well-characterized BiP ATPase mutants were used in transient expression experiments. We demonstrate that wild-type lambda LCs showed prolonged association with mutant BiP which inhibited their secretion. Both wild-type and mutant BiP bound only to unfolded and partially folded LCs. The wild-type BiP was released from the incompletely folded LCs, allowing them to fold and be secreted, whereas the mutant BiP was not released. As a result, the LCs that were bound to BiP mutants were unable to undergo complete disulfide bond formation and were retained in the ER. Our experiments suggest that LCs undergo both BiP-dependent and BiP-independent folding steps, demonstrating that both ATP binding and hydrolysis activities of BiP are essential for the completion of LC folding in vivo and reveal that BiP must release before disulfide bond formation can occur in that domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rhodopsin mutants P23H and G188R, identified in autosomal dominant retinitis pigmentosa (ADRP), and the site-specific mutants D190A and DeltaY191-Y192 were expressed in COS cells from synthetic mutant opsin genes containing these mutations. The proteins expressed from P23H and D190A partially regenerated the rhodopsin chromophore with 11-cis-retinal and were mixtures of the correctly folded (retinal-binding) and misfolded (non-retinal-binding) opsins. The mixtures were separated into pure, correctly folded mutant rhodopsins and misfolded opsins. The proteins expressed from the ADRP mutant G188R and the mutant DeltaY191-Y192 were composed of totally misfolded non-retinal-binding opsins. Far-UV CD spectra showed that the correctly folded mutant rhodopsins had helical content similar to that of the wild-type rhodopsin, whereas the misfolded opsins had helical content 50-70% of the wild type. The near-UV CD spectra of the misfolded mutant proteins lack the characteristic band pattern seen in the wild-type opsin, indicative of a different tertiary structure. Further, whereas the folded mutant rhodopsins were essentially resistant to trypsin digestion, the misfolded opsins were degraded to small fragments under the same conditions. Therefore, the misfolded opsins appear to be less compact in their structures than the correctly folded forms. We suggest that most, if not all, of the point mutations in the intradiscal domain identified in ADRP cause partial or complete misfolding of rhodopsin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L125R is a mutation in the transmembrane helix C of rhodopsin that is associated with autosomal dominant retinitis pigmentosa. To probe the orientation of the helix and its packing in the transmembrane domain, we have prepared and studied the mutations E122R, I123R, A124R, S127R, L125F, and L125A at, and in proximity to, the above mutation site. Like L125R, the opsin expressed in COS-1 cells from E122R did not bind 11-cis-retinal, whereas those from I123R and S127R formed the rhodopsin chromophore partially. A124R opsin formed the rhodopsin chromophore (lambda max 495 nm) in the dark, but the metarhodopsin II formed on illumination decayed about 6.5 times faster than that of the wild type and was defective in transducin activation. The mutant opsins from L125F and L125A bound 11-cis-retinal only partially, and in both cases, the mixtures of the proteins produced were separated into retinal-binding and non-retinal-binding (misfolded) fractions. The purified mutant rhodopsin from L125F showed lambda max at 500 nm, whereas that from L125A showed lambda max at 503 nm. The mutant rhodopsin L125F showed abnormal bleaching behavior and both mutants on illumination showed destabilized metarhodopsin II species and reduced transducin activation. Because previous results have indicated that misfolding in rhodopsin is due to the formation of a disulfide bond other than the normal disulfide bond between Cys-110 and Cys-187 in the intradiscal domain, we conclude from the misfolding in mutants L125F and L125A that the folding in vivo in the transmembrane domain is coupled to that in the intradiscal domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free GroEL binds denatured proteins very tightly: it retards the folding of barnase 400-fold and catalyzes unfolding fluctuations in native barnase and its folding intermediate. GroEL undergoes an allosteric transition from its tight-binding T-state to a weaker binding R-state on the cooperative binding of nucleotides (ATP/ADP) and GroES. The preformed GroEL.GroES.nucleotide complex retards the folding of barnase by only a factor of 4, and the folding rate is much higher than the ATPase activity that releases GroES from the complex. Binding of GroES and nucleotides to a preformed GroEL.denatured-barnase complex forms an intermediately fast-folding complex. We propose the following mechanism for the molecular chaperone. Denatured proteins bind to the resting GroEL.GroES.nucleotide complex. Fast-folding proteins are ejected as native structures before ATP hydrolysis. Slow-folding proteins enter chaperoning cycles of annealing and folding after the initial ATP hydrolysis. This step causes transient release of GroES and formation of the GroEL.denatured-protein complexes with higher annealing potential. The intermediately fast-folding complex is formed on subsequent rebinding of GroES. The ATPase activity of GroEL.GroES is thus the gatekeeper that selects for initial entry of slow-folding proteins to the chaperone action and then pumps successive transitions from the faster-folding R-states to the tighter-binding/stronger annealing T-states. The molecular chaperone acts as a combination of folding cage and an annealing machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is thought to play a dominant role in protein folding, yet gaseous multiply protonated proteins from which the water has been completely removed show hydrogen/deuterium (H/D) exchange behavior similar to that used to identify conformations in solution. Indicative of the gas-phase accessibility to D2O, multiply-charged (6+ to 17+) cytochrome c cations exchange at six (or more) distinct levels of 64 to 173 out of 198 exchangeable H atoms, with the 132 H level found at charge values 8+ to 17+. Infrared laser heating and fast collisions can apparently induce ions to unfold to exchange at a higher distinct level, while charge-stripping ions to lower charge values yields apparent folding as well as unfolding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermodynamic stability measurements on proteins and protein-ligand complexes can offer insights not only into the fundamental properties of protein folding reactions and protein functions, but also into the development of protein-directed therapeutic agents to combat disease. Conventional calorimetric or spectroscopic approaches for measuring protein stability typically require large amounts of purified protein. This requirement has precluded their use in proteomic applications. Stability of Proteins from Rates of Oxidation (SPROX) is a recently developed mass spectrometry-based approach for proteome-wide thermodynamic stability analysis. Since the proteomic coverage of SPROX is fundamentally limited by the detection of methionine-containing peptides, the use of tryptophan-containing peptides was investigated in this dissertation. A new SPROX-like protocol was developed that measured protein folding free energies using the denaturant dependence of the rate at which globally protected tryptophan and methionine residues are modified with dimethyl (2-hydroxyl-5-nitrobenzyl) sulfonium bromide and hydrogen peroxide, respectively. This so-called Hybrid protocol was applied to proteins in yeast and MCF-7 cell lysates and achieved a ~50% increase in proteomic coverage compared to probing only methionine-containing peptides. Subsequently, the Hybrid protocol was successfully utilized to identify and quantify both known and novel protein-ligand interactions in cell lysates. The ligands under study included the well-known Hsp90 inhibitor geldanamycin and the less well-understood omeprazole sulfide that inhibits liver-stage malaria. In addition to protein-small molecule interactions, protein-protein interactions involving Puf6 were investigated using the SPROX technique in comparative thermodynamic analyses performed on wild-type and Puf6-deletion yeast strains. A total of 39 proteins were detected as Puf6 targets and 36 of these targets were previously unknown to interact with Puf6. Finally, to facilitate the SPROX/Hybrid data analysis process and minimize human errors, a Bayesian algorithm was developed for transition midpoint assignment. In summary, the work in this dissertation expanded the scope of SPROX and evaluated the use of SPROX/Hybrid protocols for characterizing protein-ligand interactions in complex biological mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibronectin (FN) is a large extracellular matrix (ECM) protein that is made up of

type I (FNI), type II (FNII), & type III (FNIII) domains. It assembles into an insoluble

supra-­‐‑molecular structure: the fibrillar FN matrix. FN fibrillogenesis is a cell‐‑mediated process, which is initiated when FN binds to integrins on the cell surface. The FN matrix plays an important role in cell migration, proliferation, signaling & adhesion. Despite decades of research, the FN matrix is one of the least understood supra-­‐‑molecular protein assemblies. There have been several attempts to elucidate the exact mechanism of matrix assembly resulting in significant progress in the field but it is still unclear as to what are FN-­‐‑FN interactions, the nature of these interactions and the domains of FN that

are in contact with each other. FN matrix fibrils are elastic in nature. Two models have been proposed to explain the elasticity of the fibrils. The first model: the ‘domain unfolding’ model postulates that the unraveling of FNIII domains under tension explains fibril elasticity.

The second model relies on the conformational change of FN from compact to extended to explain fibril elasticity. FN contain 15 FNIII domains, each a 7-­‐‑strand beta sandwich. Earlier work from our lab used the technique of labeling a buried Cys to study the ‘domain unfolding’ model. They used mutant FNs containing a buried Cys in a single FNIII domain and found that 6 of the 15 FNIII domains label in matrix fibrils. Domain unfolding due to tension, matrix associated conformational changes or spontaneous folding and unfolding are all possible explanation for labeling of the buried Cys. The present study also uses the technique of labeling a buried Cys to address whether it is spontaneous folding and unfolding that labels FNIII domains in cell culture. We used thiol reactive DTNB to measure the kinetics of labeling of buried Cys in eleven FN III domains over a wide range of urea concentrations (0-­‐‑9M). The kinetics data were globally fit using Mathematica. The results are equivalent to those of H-­‐‑D exchange, and

provide a comprehensive analysis of stability and unfolding/folding kinetics of each

domain. For two of the six domains spontaneous folding and unfolding is possibly the reason for labeling in cell culture. For the rest of the four domains it is probably matrix associated conformational changes or tension induced unfolding.

A long-­‐‑standing debate in the protein-­‐‑folding field is whether unfolding rate

constants or folding rate constants correlate to the stability of a protein. FNIII domains all have the same ß sandwich structure but very different stabilities and amino acid sequences. Our study analyzed the kinetics of unfolding and folding and stabilities of eleven FNIII domains and our results show that folding rate constants for FNIII domains are relatively similar and the unfolding rates vary widely and correlate to stability. FN forms a fibrillar matrix and the FN-­‐‑FN interactions during matrix fibril formation are not known. FNI 1-­‐‑9 or the N-­‐‑ terminal region is indispensible for matrix formation and its major binding partner has been shown to be FNIII 2. Earlier work from our lab, using FRET analysis showed that the interaction of FNI 1-­‐‑9 with a destabilized FNIII 2 (missing the G strand, FNIII 2ΔG) reduces the FRET efficiency. This efficiency is restored in the presence of FUD (bacterial adhesion from S. pyogenes) that has been known to interact with FNI 1-­‐‑9 via a tandem ß zipper. In the present study we

use FRET analysis and a series of deletion mutants of FNIII 2ΔG to study the shortest fragment of FNIII 2ΔG that is required to bind FNI 1-­‐‑9. Our results presented here are qualitative and show that FNIII 2ΔC’EFG is the shortest fragment required to bind FNI 1-­‐‑9. Deletion of one more strand abolishes the interaction with FNI 1-­‐‑9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is the most commonly diagnosed malignancy and the second leading cause of cancer related deaths in Australian men. Treatment in the early stages of the disease involves surgery, radiation and/or hormone therapy. However, in late stages of the disease these treatments are no longer effective and only palliative care is available. Therefore, there is a focus on exploration of novel therapies to increase survival and treatment efficacy. Advanced prostate cancer is characterised by bone or other distant metastasis. Spreading of the primary tumour to a secondary location is a complex process requiring an initial loss in cell-cell adhesion followed by increased cell migration and invasion. One gene family that has been known to affect cell-to-cell contact in other model systems are the Eph receptor tyrosine kinases. They are the largest family of receptor tyrosine kinases made up of 14 vertebrate Eph receptors that bind to nine cell membrane bound ephrin ligands. Eph-ephrin interaction is crucial in regulating cell behaviour in developmental processes and it is now thought that the underlying mechanisms involved in development may also be involved in cancer. Aberrant expression has been reported in many human malignancies including prostate cancer. Furthermore, expression has been linked with metastasis and poor prognosis in other tumour models. This study explores the potential role of the Eph receptor family in prostate cancer, in particular the roles of EphA2, EphA3 and ephrin-A5. Gene expression profiles were established for the Eph family in a series of prostate cancer cell lines using quantitative real time RT-PCR. A smaller subset of the most prominently expressed genes was chosen to screen a cohort of clinical samples. Elevated levels of EphA2, EphA3 and their ligands, ephrin-A1 and ephrin-A5 were observed in individual cell lines. Interestingly high EphA3 expression was observed in the androgen responsive cell lines while EphA2 was more prominent in the androgen independent cell lines. However, studies using 5-dihydrotestosterone suggest that EphA3 expression in not regulated by androgen. Cells expressing EphA2 showed a greater ability for migration and invasion while cells expressing EphA3 showed poor migration and invasion. Forced expression of EphA2 in the LNCaP cell line resulted in a more invasive phenotype while forced expression of EphA3 in the PC-3 cell line suggests a possible negative effect for EphA3 on cell migration and invasion. Cell signalling studies show activation of EphA2 decreases activity of proteins thought to be involved in pathways regulating cell movement including Akt, Src and FAK. Changes to the activation status of Rho family members, including RhoA and Rac1, associated with reorganisation of the actin cytoskeleton, an important part of cell migration was also observed. As a result, activation of EphA2 in PC-3 cells resulted in a less invasive phenotype. A novel finding in this study was the discovery of a combination of two EphA2 Mabs able to activate EphA2. Preliminary results show a potential for this antibody combination to reduce prostate cancer invasion in vitro. A unique aspect of Eph-ephrin interaction is the resulting bi-directional signalling that occurs through both the receptor and ligand. In this study a potential role for ephrin-A5 mediated signalling in prostate cancer was observed. LNCaP cells express high levels of EphA3 and its high affinity ligand ephrin-A5. In stripe assays, used to study guidance cues, LNCaP cells show strong attraction/migration to EphA3-Fc stripes but not ephrin-A5-Fc stripes suggesting ephrin-A5 mediated reverse cell signalling is involved. Knockdown of ephrin-A5 using shRNA resulted in a decrease in attraction/migration to EphA3-Fc stripes. Furthermore a reduction in proliferation was also observed in vitro. A subcutaneous xenograft model using ephrin-A5 shRNA cells versus controls showed a decrease in tumour formation. This study demonstrates a difference in EphA2 and EphA3 function in prostate cancer migration/invasion and a potential role for ephrin-A5 in prostate cancer cell adhesion and growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stoned locus in Drosophila encodes two proteins StonedA (STNA) and StonedB (STNB), both of which have been suggested to act as adaptins in mediating synaptic vesicle recycling. A combination of immunological, genetic and biochemical studies have shown an interaction of STNA and STNB with the C2B domain of Synaptotagmin-I (SYT-1), an integral synaptic vesicle protein that mediates Ca2+-dependent exocytosis, as well as endocytosis. The C2B domain of SYT-1 contains an AP-2 binding site that controls the size of recycled vesicles, and a C-terminal tryptophan-containing motif that acts as an internalization signal. Investigation of SYT-1 mutations in Drosophila has shown that altering the Ca2+ binding region of the C2B domain, results in a reduction in the rate of vesicle recycling, implicating this region in SYT-I endocytosis. In this poster, we report the molecular dissection of the interactions between the STNA and STNB proteins and the C2B domain of SYT-1. Deletion of the AP-2 binding site decreased the binding of both STNA and STNB. However, C-terminal deletions of the C2B domain significantly increased STNB binding. In contrast, the same C-terminal deletions reduced the affinity of the C2B domain for STNA. The possible interactions of both STNB and STNA with the Ca2+ binding region of SYT-1 will be also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. Methods: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. Results: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. Conclusion: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.