935 resultados para Fisiologia vegetal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O alumínio (Al) em solos ácidos encontra-se na forma Al3+, sendo considerado tóxico às plantas de interesse agronômico, como o limoeiro Cravo (Citrus limonia), afetando principalmente seu crescimento radicular . O presente estudo avaliou como o Al influencia as raízes de C. limonia, visando correlacionar a concentração endógenea de IAA, a expressão dos genes SAUR X10A e SAUR 15A e a inibição do crescimento radicular. As plantas foram submetidas à hidroponia em diferentes concentrações de Al na solução nutritiva (0, 370 μM, 740 μM, 1110 μM, e 1480), tendo seu crescimento avaliado semanalmente em um período de dois meses. Além disso, as soluções contrastantes tiveram a expressão gênica e a concentração endógenea de IAA avaliados utilizando qRT-PCR e GC-MS, respectivamente. O tratamento com Al inibiu o crescimento radicular das plantas, além de alterar a concentração de IAA nas raízes (apresentou-se algumas vezes maior nas primeiras semanas em relação ao controle, havendo um decaimento e igualação na concentração hormonal de ambos os tratamentos) e inibir a expressão dos genes SAUR. A inibição do crescimento radicular pode ser atribuida à uma mudança de padrão e acumulação do ácido indol-acético (IAA) no ápice da raiz, provocada pela alteração na distribuição das proteínas de transporte. Concomitantemente, proteínas da família SAUR (small auxin-up RNA) têm suas expressões gênicas induzidas em presença de IAA e estão relacionadas à acidificação do apoplasto: a queda na atividade da H+-ATPase provoca a altereção do pH nesta região prejudicando a alongação da célula via crescimento ácido. Embora haja uma mesma quantidade de IAA na raiz, os genes SAUR são reprimidos na condição de estresse pelo Al, indicando que a inibição do crescimento radicular em C. limonia deve ocorrer em resposta a um conjunto de fatores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The DOF (DNA binding with One Finger) transcription factor (TF) family is characterized by a binding domain of 52 amino acid residues that is structured as a Cys2/Cys2 Zn2+ finger that recognizes the common core 5?-T/AAAAG-3? in the promoter regions of their target genes. DOF TFs have been associated with biological processes exclusive to higher plants and their close ancestors (algae, mosses and ferns).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loss of seed dormancy can occur by exposing the seed at low moisture storage conditions (afterripening; AR). Since a positive GA:ABA ratio play a key role in the reactivation of germination of non-dormant seeds, it seems obvious that a remarkable effect of AR is the decreasing of both ABA levels and sensitivity, as well as the increment of GA synthesis and sensitivity. ABA levels are regulated by control both of its biosynthesis thorough the 9-cis-epoxycarotenoid dioxygenase (NCED) encoding genes and its catabolism mediated mainly by ABA-8¿-hydroxylases (CYP707A). On the other hand, the last steps of the GA biosynthesis pathway should be involved to control its levels. Namely, GA20ox and GA3ox catalyzing the biosynthesis of active GA and GA2ox which catalyzes the GA inactivation. The presence of nitrate accelerates the sensu stricto germination of non-AR S. officinale seeds. Here, we demonstrate that in AR seeds nitrate also alters the expression pattern of key genes involved in ABA and GA metabolism and signalling (i.e. SoNCED6, SoNCED9, SoCYP707A2, SoABI5, SoGA3ox2, SoGA20ox6, SoGA2ox6 and SoRGL2). These results suggest that the nitrate signalling is also operative during imbibition of AR S. officinale seeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During seed germination, the endosperm cell walls (CWs) suffer an important weakening process mainly driven by hydrolytic enzymes, such are endo-?- mannanases (MAN; EC. 3.2.1.78) that catalyze the cleavage of ?1?4 bonds in the mannan-polymers. In Arabidopsis thaliana seeds, endo-?-mannanase activity increases during seed imbibition, decreasing after radicle emergence1. AtMAN7 is the most highly expressed MAN gene in seeds upon germination and their transcripts are restricted to the micropylar endosperm and to the radicle tip just before radicle emergence. Mutants with a T-DNA insertion in this gene (K.O. MAN7) have a slower germination rate than the wild type (t50=34 h versus t50=25 h). To gain insight into the transcriptional regulation of the AtMAN7 gene, a bioinformatic search for conserved non-coding cis-elements (phylogenetic shadowing) within the Brassicaceae orthologous MAN7 gene promoters has been done and these conserved motives have been used as baits to look for their interacting transcription factors (TFs), using as a prey an arrayed yeast library of circa 1,200 TFs from A. thaliana. The basic leucine zipper AtbZIP44, but not its closely related ortholog AtbZIP11, has been thus identified and its regulatory function upon AtMAN7 during seed germination validated by different molecular and physiological techniques, such are RT-qPCR analyses, mRNA Fluorescence in situ Hybridization (FISH) experiments, and by the establishment of the germination kinetics of both over-expression (oex) lines and TDNA insertion mutants in AtbZIP44. The transcriptional combinatorial network through which AtbZIP44 regulates AtMAN7 gene expression during seed germination has been further explored through protein-protein interactions between AtbZIP44 and other bZIP members. In such a way, AtbZIP9 has been identified by yeast two-hybrid experiments and its physiological implication in the control of AtMAN7 expression similarly established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dormancy is an adaptive mechanism that allows woody plants to survive at low temperatures during the winter. Disruption of circadian clock genes in winter or under low temperatures, both in long days as in short days, were described in our group few years ago (Ramos et al., 2005). Basic mechanisms of the circadian clock function are similar in herbaceous as well as in woody plants although there are differences in their response to low temperatures (Bieniawska et al., 2008). Woody plants growing in daylight conditions should have a specific transcriptional control above the circadian clock genes, which is responsible of their constitutive transcriptional activation observed under low temperatures conditions. In order to understand this regulatory process, we are analyzing the behavior of a circadian clock gene in poplar. To this aim, we have isolated its promoter region and fused to the luciferase reporter gene. This construct has been transformed into Populus tremula x P. alba 717-1B4 INRA clone. Here we present the characterization of these transgenic lines under different conditions of light and temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fast-growing tree species of Populus spp.,Salix spp. and Eucalyptus spp. are cultivated to produce wood in a short time. Poplars are cultivated with cycles of 15-18 years to obtain saw timber and peeler logs, but when grown as short -rotation coppice(SRC) to produce biomass, planting density increases and rotation is considerably reduced (3-5 years). In this regard, research efforts are focused in the identification of traits and loci that allow the generation of improved SRC biomass-yielding genotypes. Biomass yield is a highly complex trait as it is the combined outcome of many other complex traits, each under separate polygenic control. Among profitable biomass yield-related traits are the amount of sylleptic branching and the length of winter dormancy. In poplar and in a few other Salicaceae species some lateral buds grow out sylleptically, the same season in which they form without the need of an intervening rest period. Sylleptic branching in poplar increases branch number, leaf area and general growth of the tree in its early years, and is a reasonable predictor of coppice yield. On the other hand, the length of winter dormancy determines the extent of the growth period. Our group has characterized the RAV1 gene of Castanea sativa (CsRAV1), encoding a transcription factor of the subfamily RAV (Related to ABI3/VP1). CsRAV1 expression shows a marked seasonal pattern, being higher in autumn and winter both in stems and buds. We generated transgenic lines of the hybrid clone Populus tremulax P. alba INRA 717 1B4 constitutively expressing CsRAV 1. These CsRAV1-expressing poplars develop sylleptic branches only a few weeks after potting. In addition to the sylleptic branching phenotype, these trees show phenological features that could give rise to an extended growth period. We are currently assessing the phenotype and behavior of these transgenic trees in a field trial, and ultimately, we will evaluate the impact on lignocellulosic biomass quality and production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Winter dormancy is the strategy used by perennial plants to survive the harsh conditions of winter in temperate and cold regions. This complex mechanism is characterized by cessation of the meristems activity, which is accompanied by the budset, the acquisition of a high tolerance to the cold temperatures and, in the case of deciduous trees, by the senescence and leaf abscission. In long-lived forest species, the length of the dormancy period limits the growing season, affecting wood production and quality. A Suppression Subtractive Hybridization (SSH) enriched in genes overexpressed during the process of winter dormancy in chesnut stems identified a DNA glycosylase gene. In order to study its role in the establishment and maintenance of the winter dormancy, a molecular characterization and seasonal expression were performed. Furthermore, we have obtained poplar transgenic plantlets overexpressing the chesnut gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientific research in forest production technology area search techniques that increase production per unit area, with high economic viability and reducing environmental impacts. When dealing with forest plantations, studies are needed in the production of biomass and its nutrient content, and these are data parameters for planning the environmental implications of different intensities of forest harvesting. Given the above, this study aimed to elucidate the production and export of biomass and nutrients for two species of the genus Eucalyptus (E. grandis and E. urophylla) grown in the southwestern region of Parana. For this, it was evaluated: the stock of biomass and nutrients in eucalyptus (wood, bark, branches and leaves) at 60 months of age; the export rate of nutrients; the calorific value and economic viability. The biomass and the largest eucalyptus nutrient stocks are predominantly allocated to the stem (wood + bark). The components of biomass showed different chemical compositions, generally being higher in the leaves and bark and lower in wood and branches components. As for the calorific value, the leaves had its calorific value statistically superior than the other fractions, followed by branches, wood and bark. The organic carbon content (C.O.) is directly connected to the calorific value, and the calorific value increases as its content increase. The wood had the highest nutrient use efficiency values, something highly desirable and of great interest to forestry. The leaves showed smaller nutrient utilization efficiency values, with the exception of Ca and Mg that were smaller in the bark, indicating the importance of maintaining these components in the soil after harvest. The wood fraction presents the biomass lower cost when considering the replacement of nutrients exported by its biomass. On the other hand, the leaf fraction showed NPK higher cost of replacement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vineyard culture, in the Southwest of Paraná, has faced an evolution in recently years. However, some technical barriers has contained the expression of its full potential. Among which, the lack of scientific and technical support about the fertilization management and the fertility maintenance of production fields, is the most worrying. This fact, allied with the raising on the consumers demand for ecological correct products, are the motivations for the present study, whose main objective was to evaluate the effects of different fertilizer formulations, based on alternative nutrient sources, on grapevine yield and grape fruit quality, aiming at the improvement of those parameters and the maintenance of soil fertility. To achieve this goal, an experiment has been evaluated since 2008, at the experimental area of the Federal Technological University of Paraná, Campus Pato Branco, where ten treatments were being tested, combining or isolating shale derivates from other alternative nutrient sources. Those are the treatments: T1: Gafsa Rock Phosphate (GRP) + K2SO4; T2: GRP + RPB (Rock Powder Bioland®); T3: GRP + K2SO4 + LH (Laying Hen Litter); T4: GRP+ RPB + LH; T5: GRP + K2SO4 + MBR (Matrix Shale 3); T6: GRP + RPB + MBR; T7: GRP + K2SO4 + MBR + LH; T8: GRP + RPB + LH + MBR; T9: TSP (Triple Superphosphate) + Urea + KCl and T10: absolute control. The usage of fertilization, specially the alternative fertilization, improved soil fertility characteristics and also the yield on the last two evaluated harvests. The potassium sulfate improved the potassium availability on soil, while improved yield on the last three harvests. The MBR improved the phosphorus availability, improved post-harvest conservation and improved the yield on the last evaluated harvest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazilian sweet sorghum is used to generate ethanol and the bagasse is burned in industrial boilers or deposited on soil polluting the environment. This study evaluated the performance of sorghum plants and its bagasse silage nutritional value aiming to use it in the ruminant nutrition. Experiments were set up on the UTFPR campus at Dois Vizinhos-PR. The first trial was established on October 2nd, 2012 using the genotypes ADV 2010, Hunnigreen, Sugargraze, Volumax, BR 505, 503, 501 and the second trial at 2013 on November 27th assessing the materials ADV 2010, Sugargraze, Hunnigreen, EX 5110, BR 506, 508, 509 and 511. Experimental was laid out as a randomized block design with three replications. Results were analyzed through ANOVA comparing the averages by Duncan test at 5% error probability. As field variables were evaluated: plant height (Pl hei), green mass production (GM Prod), percentage of leaves, stems and panicles in relation to the plant, stems production without straw (Prod stems with straw), whole stems production (Who stems Prod), stem diameter (Stem diam), juice production (Juice prod) and Brix degree (oBrix). After juice plant extraction, forage bagasse was crushed and packed in silos for 60 days and green matter yield was estimated (GM). In bagasse silage gauged to buffer capacity (BC), dry matter (DM), mineral matter (MM), crude protein (CP), ether extract (EE), total carbohydrates (TC), non-fibrous carbohydrates (NFCH), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin (LIG ) and digestibility "in vitro" (DIGIV). There was no significant difference (P> 0.05) between genotypes regarding to green matter production and on average, the second crop yield was lower and reflected in the reduction of bagasse production. Bagasse silage DM was of 32.3% and 33.1%; NDF 73% and 65.8%, crude protein 3.8% and 5.9; pH 3.7 and 3.7; TC and 9.8 and 10.7. mg MS-1; the amount of NFCH was 11.1 and 13.5%; DIG of DM 36.9 and 62.4% for the respectively to the bagasse produced from materials grown in the 2012/2013 and 2013/2014 seasons. Hybrid genotypes had a better agronomic performance while the varieties were more efficient in bromatological indexes. And despite the high percentage of NDF and the low protein level, it is possible to feed ruminants with this coproduct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the high supply and its attractive cost, the poultry litter has been used in the southwestern region of Parana to the improvement of soil fertility seeking greater production of grains and pastures. However, the use without technical knowledge can minimize the benefits of poultry litter or even cause undesirable effects on soil, environmental pollution and also productivity losses in the used crops. The objective of this study was to evaluate the influence of different times of poultry litter application, predating the winter crop, associated with increasing levels, about soil chemical properties, release of nutrients and crop performances in four consecutive years (2011-2014). In the first three years the experimental design was randomized blocks with a split plot system and four replications. In the main plots were tested four poultry litter application times preceding the wheat production: 0, 15, 30 and 45 days before sowing (DAS); in the subplots were applied four poultry litter levels (wet basis): 0, 4, 8 and 12 Mg ha-1. Last year one more subdivision of plots was done, evaluating the use or not of nitrogen in coverage in wheat, at a dose of 100 kg N ha-1. The wheat cultivar used in the four years was the BRS 220. In three years it was evaluated the residual effect on soybean production (cultivar - BMX Turbo RR) and in one year on the beans. The chemical soil attributes were evaluated at four depths 0-2,5cm, 2,5-5cm, 5-10cm and 10-20cm, and also the rate of decomposition and nutrient release of poultry litter and the crop productivity. The different times of application concerning the poultry litter had little influence on the studied variables, demonstrating that the producer does not need to have a specific date (before planting) to the application of poultry litter. Potassium was fully released 60 days after the allocation of litter bags into the field; for nitrogen and phosphorus the release was slower. The use of increasing levels of poultry litter increased the levels of various soil elements, highlighting the potassium which reached 20 cm deep in the second year of evaluation. The increase in pH and in the base saturation occurred only in the upper layers, while the phosphorus reached 10 cm deep in the third year of the study. It was observed increased pH and base saturation. The use of increasing doses of poultry litter contributed to the wheat plant nutrition, significantly increasing the weight of a thousand grains, and the grain yield of wheat in all the evaluated years; the nitrogen fertilization in coverage also had significant effect for the fourth evaluated year. Also there was a significant response from the residual effect of poultry litter for crops planted in summer for both soybeans and beans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The identification of genotypes for drought tolerance has a great importance in breeding programs. The aim of this study was to characterize genotypes of beans in response to drought tolerance in different reproductive stages through physiologic, agronomic and molecular analysis. The experiment was conducted in greenhouse, using a randomized block design with four replicates; 10 cultivars: ANFC 9, ANFP 110, BRS Esplendor, BRSMG Realce, IPR Siriri, IPR Tangará, IPR Tuiuiu, IPR Uirapuru, IAC Imperador and IAC Milênio under two conditions of irrigation: plants irrigated during their entire life cycle, and plants under irrigation suppression in the reproductive stage (R7) until 16% of field capacity, when the irrigation was restored. In the last four days of stress, the gas exchanges were analyzed, and in the last day of stress was analyzed the percentage of closed stomata in the abaxial surface of the leaves, collected in different times of the day (9h, 12h, 15h and 18h). Additionally, plant samples were collected for the following analysis: fresh and dry mass of leaves, stems and legumes, and proline content in leaves and roots. The plants were harvested at the physiological maturity and the yield components and grain yield were determined. In addition, in order to identify polymorphisms in the sequences of promoters and genes related to drought, seven pairs of primers were tested on the group of genotypes. The drought susceptibility indexes (ISS) ranged from 0.65 to 1.10 in the group of genotypes, which the lowest values observed were for IAC Imperador (0.65) and BRS Esplendor (0.87), indicating the ability of these two genotypes to maintain grain yield under water stress condition. All genotypes showed reduction in yield components under water stress. IAC Imperador (43.4%) and BRS Esplendor (60.6%) had the lowest reductions in productivity and kept about 50% of the stomata closed during all the different times evaluated at last day of irrigation suppression. IAC Imperador showed greater water use efficiency and CO2 assimilation rate under drought stress. IPR Tuiuiú, IPR Tangará and IAC Imperador had the highest proline concentrations in the roots. Under water stress condition, there was a strong positive correlation (0.696) between the percentage of stomata closed with the number of grains per plant (0.696) and the fresh mass of leaves (0.731), the maximum percentage of stomata closed 73.71% in water stress. The accumulation of proline in the root was the character that most contributed to the divergence between the genotypes under water deficit, but not always the genotypes that have accumulated more proline were the most tolerant. The polymorphisms in DNA of coding and promoting sequences of transcription factors studied in this experiment did not discriminate tolerant genotypes from the sensitive ones to water stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since centuries ago, the Asians use seaweed as an important source of feeding and are their greatest world-wide consumers. The migration of these peoples for other countries, made the demand for seaweed to increase. This increasing demand prompted an industry with annual values of around US$ 6 billion. The algal biomass used for the industry is collected in natural reservoirs or cultivated. The market necessity for products of the seaweed base promotes an unsustainable exploration of the natural banks, compromising its associated biological balance. In this context, seaweed culture appears as a viable alternative to prevent the depletion of these natural supplies. Geographic Information Systems (GIS) provide space and produce information that can facilitate the evaluation of important physical and socio-economic characteristics for the planning of seaweed culture. This objective of this study is to identify potential coastal areas for seaweed culture in the state of Rio Grande do Norte, from the integration of social-environmental data in the SIG. In order to achieve this objective, a geo-referred database composed of geographical maps, nautical maps and orbital digital images was assembled; and a bank of attributes including physical and oceanographical variables (winds, chains, bathymetry, operational distance from the culture) and social and environmental factors (main income, experience with seaweed harvesting, demographic density, proximity of the sheltered coast and distance of the banks) was produced. In the modeling of the data, the integration of the space database with the bank of attributes for the attainment of the map of potentiality of seaweed culture was carried out. Of a total of 2,011 ha analyzed by the GIS for the culture of seaweed, around 34% or 682 ha were indicated as high potential, 55% or 1,101 ha as medium potential, and 11% or 228 ha as low potential. The good indices of potentiality obtained in the localities studied demonstrate that there are adequate conditions for the installation of seaweed culture in the state of Rio Grande do Norte

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Araucaria angustifolia apresenta redução da taxa de crescimento durante o ano, podendo ser resposta às condições ambientais desfavoráveis, como ocorre nas fruteiras de clima temperado, que apresentam dormência de gemas como forma de sobrevivência. O objetivo deste trabalho foi avaliar a dinâmica da atividade respiratória de meristemas apicais de ramos plagiotrópicos de Araucaria angustifolia. Foram coletadas amostras de 0,4 g de brotações terminais de ramos plagiotrópicos de plantas jovens e adultas, as quais foram mantidas em 5 mL de solução de cloreto de 2,3,5 trifeniltetrazólio (1,2%) em sala de crescimento a 25°C. Em seguida, foram mantidas em 4 mL de álcool etílico absoluto para leitura por espectrofotometria da absorbância a 560 nm. A atividade respiratória de meristemas apicais de ramos plagiotrópicos de Araucaria angustifolia é variável durante o ano. A maior atividade respiratória ocorre na metade da primavera e a menor atividade respiratória ocorre no inverno, em plantas jovens e adultas. Plantas adultas permanecem em alta atividade respiratória por um período maior, até o início do verão.