989 resultados para Fibroblasts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280-320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB-induced damage. To investigate these processes, established two and three-dimensional culture models were utilized to study the impact of fibroblast-keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase-3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast-produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation-induced damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, many studies have provided evidence that exosomes secreted by cells contain various components, including microRNAs [1]. It is thought that exosomes have important roles in many biological processes. However, the role of exosomes and their components, especially miRNAs, in wound healing is poorly understood. In order to understand whether or not primary human epidermal keratinocytes and dermal fibroblasts, two important cell types contributing to wound healing process, release exosomes and what species of wound healing-associated miRNAs accumulate in these vesicles, this project will use a combination of methods to isolate and characterize exosomes, to profile exosomal cargo’s, especially miRNAs in exosomes. The results showed that keratinocytes and fibroblasts released exosomes into conditioned media and these exosomes contain some target miRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transglutaminase-2 (TGM-2) stabilizes extracellular matrix (ECM) proteins by cross-linking and has been implicated in several fibrotic disorders. Arecoline present in betel quid has been proposed as one of the causative factors for oral submucous fibrosis (OSMF). Hence, we hypothesize that arecoline may regulate TGM-2 and may have a role in the pathogenesis of OSMF. The expression of TGM-2 was studied in OSMF tissues by real-time RT-PCR analysis, and significant overexpression was observed in most OSMF tissues (P = 0.0112) compared with normal tissues. Arecoline induced TGM-2 mRNA and protein expression as well as TGM-2 activity in human gingival fibroblast cells. The addition of methocramine hemihydrate (M-2 muscarinic acetylcholine receptor selective antagonist) or 8'-bromo-cAMP abolished arecoline-mediated TGM-2 induction, suggesting a role for M-2 muscarinic acid receptor and a repressor role for cAMP. Our study provides evidence for TGM-2 overexpression in OSMF and its regulation by arecoline in oral fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cultured rat embryonic skin fibroblasts phagocytosed rat mast cell granules added to the medium or released from co-cultured mast cells by rabbit anti-rat IgE or Compound 48/80. Electron microscopy of fibroblasts incubated with mast cell granules revealed that granules adjacent to the plasmalemma were engulfed by long, thin cytoplasmic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been recognized that mast cells occur throughout connective tissues. Histologic studies have revealed that such cells release their granules into the surrounding environment upon exposure to both immunologic and nonimmunologic stimuli. By microscopy these extracellular granules appeared to be phagocytosed by fibroblasts and by blood-borne phagocytic cells as they entered the site of mast cell degranulation. Such in vivo observations led to the suggestion that mast cells both altered connective tissue components and influenced fibroblast function through these discharged granules. Recent in vitro studies using cultured fibroblasts and isolated mast cells and mast cell granules have confirmed both these hypotheses. In addition, such studies have also documented that fibroblasts degrade ingested mast cell granules. Such studies document that a number of critical interactions may occur between mast cells and connective tissue components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: Oral submucous fibrosis, a disease of collagen disorder, has been attributed to arecoline present in the saliva of betel quid chewers. However, the molecular basis of the action of arecoline in the pathogenesis of oral submucous fibrosis is poorly understood. The basic aim of our study was to elucidate the mechanism underlying the action of arecoline on the expression of genes in oral fibroblasts. Material and Methods: Human keratinocytes (HaCaT cells) and primary human gingival fibroblasts were treated with arecoline in combination with various pathway inhibitors, and the expression of transforming growth factor-beta isoform genes and of collagen isoforms was assessed using reverse transcription polymerase chain reaction analysis. Results: We observed the induction of transforming growth factor-beta2 by arecoline in HaCaT cells and this induction was found to be caused by activation of the M-3 muscarinic acid receptor via the induction of calcium and the protein kinase C pathway. Most importantly, we showed that transforming growth factor-beta2 was significantly overexpressed in oral submucous fibrosis tissues (p = 0.008), with a median of 2.13 (n = 21) compared with 0.75 (n = 18) in normal buccal mucosal tissues. Furthermore, arecoline down-regulated the expression of collagens 1A1 and 3A1 in human primary gingival fibroblasts; however these collagens were induced by arecoline in the presence of spent medium of cultured human keratinocytes. Treatment with a transforming growth factor-beta blocker, transforming growth factor-beta1 latency-associated peptide, reversed this up-regulation of collagen, suggesting a role for profibrotic cytokines, such as transforming growth factor-beta, in the induction of collagens. Conclusion: Taken together, our data highlight the importance of arecoline-induced epithelial changes in the pathogenesis of oral submucous fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaviviruses have been shown to induce cell surface expression of major histocompatibility complex class I (MHC-I) through the activation of NF-kappa B. Using IKK1(-/-), IKK2(-/-), NEMO-/-, and IKK1-/- IKK2-/- double mutant as well as p50(-/-) RelA(-/-) cRel(-/-) triple mutant mouse embryonic fibroblasts infected with Japanese encephalitis virus (JEV), we show that this flavivirus utilizes the canonical pathway to activate NF-kappa B in an IKK2- and NEMO-, but not IKK1-, dependent manner. NF-kappa B DNA binding activity induced upon virus infection was shown to be composed of RelA: p50 dimers in these fibroblasts. Type I interferon (IFN) production was significantly decreased but not completely abolished upon virus infection in cells defective in NF-kappa B activation. In contrast, induction of classical MHC-I (class 1a) genes and their cell surface expression remained unaffected in these NF-kappa B-defective cells. However, MHC-I induction was impaired in IFNAR(-/-) cells that lack the alpha/beta IFN receptor, indicating a dominant role of type I IFNs but not NF-kappa B for the induction of MHC-I molecules by Japanese encephalitis virus. Our further analysis revealed that the residual type I IFN signaling in NF-kappa B-deficient cells is sufficient to drive MHC-I gene expression upon virus infection in mouse embryonic fibroblasts. However, NF-kappa B could indirectly regulate MHC-I expression, since JEV-induced type I IFN expression was found to be critically dependent on it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress induced premature senescence (SIPS) in mammalian cells is an accelerated ageing response and experimentally obtained on treatment of cells with high concentrations of H(2)O(2), albeit at sub-lethal doses, because H(2)O(2) gets depleted by abundant cellular catalase. In the present study diperoxovanadate (DPV) was used as it is known to be stable at physiological pH, to be catalase-resistant and to substitute for H(2)O(2) in its activities at concentrations order of magnitudes lower. On treating NIH3T3 cells with DPV, SIPS-like morphology was observed along with an immediate response of rounding of the cells by disruption of actin cytoskeleton and transient G2/M arrest. DPV could bring about growth arrest and senescence associated features at 25 mu M dose, which were not seen with similar doses of either H(2)O(2) or vanadate. A minimal dose of 150 mu M of H(2)O(2) was required to induce similar affects as 25 mu M DPV. Increase in senescent associated markers such as p21, HMGA2 and PAI-1 was more prominent in DPV treated cells compared to similar dose of H(2)O(2). DPV-treated cells showed marked relocalization of Cyclin D1 from nucleus to cytoplasm. These results indicate that DPV, stable inorganic peroxide, is more efficient in inducing SIPS at lower concentrations compared to H(2)O(2). (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as E-f, the fibroblast resting-membrane potential, the fibroblast conductance G(f), and the MF gap-junctional coupling G(gap). Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as G(gap), G(f), and E-f, and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of G(gap), for zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of G(gap), and, eventually, we observe that conduction failure occurs for low values of G(gap). In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling G(gap) or E-f. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actions of transforming growth factor-beta are largely context dependent. For instance, TGF-beta is growth inhibitory to epithelial cells and many tumor cell-lines while it stimulates the growth of mesenchymal cells. TGF-beta also activates fibroblast cells to a myofibroblastic phenotype. In order to understand how the responsiveness of fibroblasts to TGF-beta would change in the context of transformation, we have compared the differential gene regulation by TGF-beta in immortal fibroblasts (hFhTERT), transformed fibroblasts (hFhTERT-LTgRAS) and a human fibrosarcoma cell-line (HT1080). The analysis revealed regulation of 6735, 4163, and 3478 probe-sets by TGF-beta in hFhTERT, hFhTERT-LTgRAS and HT1080 cells respectively. Intriguingly, 5291 probe-sets were found to be either regulated in hFhTERT or hFhTERT-LTgRAS cells while 2274 probe-sets were regulated either in hFhTERT or HT1080 cells suggesting that the response of immortal hFhTERT cells to TGF-beta is vastly different compared to the response of both the transformed cells hFhTERT-LTgRAS and HT1080 to TGF-beta. Strikingly, WNT pathway showed enrichment in the hFhTERT cells in Gene Set Enrichment Analysis. Functional studies showed induction of WNT4 by TGF-beta in hFhTERT cells and TGF-beta conferred action of these cells was mediated by WNT4. While TGF-beta activated both canonical and non-canonical WNT pathways in hFhTERT cells, Erk1/2 and p38 Mitogen Activated Protein Kinase pathways were activated in hFhTERT-LTgRAS and HT1080 cells. This suggests that transformation of immortal hFhTERT cells by SV40 large T antigen and activated RAS caused a switch in their response to TGF-beta which matched with the response of HT1080 cells to TGF-beta. These data suggest context dependent activation of non-canonical signaling by TGF-beta. (C) 2015 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dynamical behaviors of two types of spiral-and scroll-wave turbulence states, respectively, in two-dimensional (2D) and three-dimensional (3D) mathematical models, of human, ventricular, myocyte cells that are attached to randomly distributed interstitial fibroblasts; these turbulence states are promoted by (a) the steep slope of the action-potential-duration-restitution (APDR) plot or (b) early afterdepolarizations (EADs). Our single-cell study shows that (1) the myocyte-fibroblast (MF) coupling G(j) and (2) the number N-f of fibroblasts in an MF unit lower the steepness of the APDR slope and eliminate the EAD behaviors of myocytes; we explore the pacing dependence of such EAD suppression. In our 2D simulations, we observe that a spiral-turbulence (ST) state evolves into a state with a single, rotating spiral (RS) if either (a) G(j) is large or (b) the maximum possible number of fibroblasts per myocyte N-f(max) is large. We also observe that the minimum value of G(j), for the transition from the ST to the RS state, decreases as N-f(max) increases. We find that, for the steep-APDR-induced ST state, once the MF coupling suppresses ST, the rotation period of a spiral in the RS state increases as (1) G(j) increases, with fixed N-f(max), and (2) N-f(max) increases, with fixed G(j). We obtain the boundary between ST and RS stability regions in the N-f(max)-G(j) plane. In particular, for low values of N-f(max), the value of G(j), at the ST-RS boundary, depends on the realization of the randomly distributed fibroblasts; this dependence decreases as N-f(max) increases. Our 3D studies show a similar transition from scroll-wave turbulence to a single, rotating, scroll-wave state because of the MF coupling. We examine the experimental implications of our study and propose that the suppression (a) of the steep slope of the APDR or (b) EADs can eliminate spiral-and scroll-wave turbulence in heterogeneous cardiac tissue, which has randomly distributed fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan and carboxymethl-chitosan (CM-chitosan) membranes with different molecular mass were prepared by a casting method. The cytocompatibility of two kinds of polysaccharide membranes to skin fibroblasts that cultured in vitro were studied. The methods were to culture the cells in soaking fluid of membranes and to culture the cells on the membranes directly. The results showed that the soaking fluid had no toxicity to fibroblasts and the biological security of lower molecular mass membranes were better than higher molecular mass membranes, and CM-chitosan membranes were better than chitosan membranes. In addition, the growth of fibroblasts on chitosan membranes was inhibited and the cells would fall off from chitosan membranes after a period of culture. However, the cells adhered and expanded well on CM-chitosan membranes. All these demonstrated that cytocompatibility of CM-chitosan membranes to skin fibroblasts was better than chitosan membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. RESULTS: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. CONCLUSIONS: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.