998 resultados para Fiber Alignment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was the determination of the deforming micromechanisms of needlepunched felts subjected to impact loads. A large experimental campaign has been carried out to analyze the influence of the fiber alignment in the ballistic performance. Ballistic limit curves of predeformed samples were compared. The fiber realignment was experimentally measure by means of 2D X-Ray diffraction. Higher specific absorption was observed for samples with a more isotropic mechanical response. A constitutive physicallybased model was developed within the context of the finite element method, which provided the constitutive response for a mesodomain including micromechanical aspects as fiber alignment, fiber sliding and pull-out. The macroscopic response has been validated with the experimental results, showing a very good agreement. The absorbed energy by the material during the impact was predicted and the fiber realignment evolution was also obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel fibrous conduit consisting of well-aligned nanofibers with longitudinal nanogrooves on the fiber surface was prepared by electrospinning and was subjected to an in vivo nerve regeneration study on rats using a sciatic nerve injury model. For comparison, a fibrous conduit having a similar fiber alignment structure without surface groove and an autograft were also conducted in the same test. The electrophysiological, walking track, gastrocnemius muscle, triple-immunofluorescence, and immunohistological analyses indicated that grooved fibers effectively improved sciatic nerve regeneration. This is mainly attributed to the highly ordered secondary structure formed by surface grooves and an increase in the specific surface area. Fibrous conduits made of longitudinally aligned nanofibers with longitudinal nanogrooves on the fiber surface may offer a new nerve guidance conduit for peripheral nerve repair and regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Partially aligned and oriented polyacrylonitrile(PAN)-based nanofibers were electrospun from PAN and SWNTs/PAN in the solution of dimethylformamide(DMF) to make the carbon nanofibers. The as-spun nanofibers were hot-stretched in an oven to enhance its orientation and crystallinity. Then it were stabilized at 250 square under a stretched stress, and carbonized at 1000 square in N-2 atmosphere by fixing the length of the stabilized nanofiber to convert them into carbon nanofibers. With this hot-stretched process and with the introduction of SWNTs, the mechanical properties will be enhanced correspondingly. The crystallinity of the stretched fibers confirmed by X-ray diffraction has also increased. For PAN nanofibers, the improved fiber alignment and crystallinity resulted in the increased mechanical properties, such as the modulus and tensile strength of the nanofibers. It was concluded that the hot-stretched nanofiber and the SWNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estudou-se o efeito de aplicações intratendíneas do polissulfato de glicosaminoglicanas (PSGAG) no tratamento de tendinite induzida pela colagenase. Dois grupos (GI e GII) de cinco eqüinos da raça Puro-Sangue Árabe, machos e fêmeas, com idades entre dois e seis anos, foram submetidos à tendinite do tendão flexor digital superficial do membro torácico esquerdo por aplicação intratendínea de 1,0ml de colagenase (2,5mg/ml). Decorridos sete dias da indução da lesão, os eqüinos do GI receberam cinco aplicações intralesionais de 1,0ml (125mg) de PSGAG, a intervalos de quatro dias, enquanto que os do GII receberam aplicações de solução fisiológica em igual volume e freqüência. Efetuaram-se avaliações clínicas e ultra-sonográficas, periodicamente, durante 150 dias. Todos os animais apresentaram claudicação e aumento local de sensibilidade, de temperatura e de volume 24 horas após a indução da lesão. Com exceção do aumento de volume, que permaneceu visível até o final do experimento, observou-se regressão de todos os sinais em todos os animais. A avaliação ultra-sonográfica evidenciou lesões de tamanho, forma e posição variados, de maior severidade entre o sétimo e 23º dia. Ao término do experimento, o grau de ecogenicidade encontrava-se entre 1 e 2, e o grau de paralelismo entre 0 e 2. A análise histopatológica evidenciou áreas cicatriciais com intensa fibroplasia e neovascularização, fibras colágenas pouco organizadas e endotendão hipercelular e espessado. Não se observou diferenças significativas entre os grupos quanto ao processo de reparação das lesões, concluindo-se que a aplicação intralesional de PSGAG não produziu efeito benéfico para tratar tendinite induzida por colagenase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’utilizzo di materiali compositi come i calcestruzzi fibrorinforzati sta diventando sempre più frequente e diffuso. Tuttavia la scelta di nuovi materiali richiede una approfondita analisi delle loro caratteristiche e dei loro comportamenti. I vantaggi forniti dall’aggiunta di fibre d’acciaio ad un materiale fragile, quale il calcestruzzo, sono legati al miglioramento della duttilità e all'aumento di assorbimento di energia. L’aggiunta di fibre permette quindi di migliorare il comportamento strutturale del composito, dando vita ad un nuovo materiale capace di lavorare non solo a compressione ma anche in piccola parte a trazione, ma soprattutto caratterizzato da una discreta duttilità ed una buona capacità plastica. Questa tesi ha avuto come fine l’analisi delle caratteristiche di questi compositi cementizi fibrorinforzati. Partendo da prove sperimentali classiche quali prove di trazione e compressione, si è arrivati alla caratterizzazione di questi materiali avvalendosi di una campagna sperimentale basata sull’applicazione della norma UNI 11039/2003. L’obiettivo principale di questo lavoro consiste nell’analizzare e nel confrontare calcestruzzi rinforzati con fibre di due diverse lunghezze e in diversi dosaggi. Studiando questi calcestruzzi si è cercato di comprendere meglio questi materiali e trovare un riscontro pratico ai comportamenti descritti in teorie ormai diffuse e consolidate. La comparazione dei risultati dei test condotti ha permesso di mettere in luce differenze tra i materiali rinforzati con l’aggiunta di fibre corte rispetto a quelli con fibre lunghe, ma ha anche permesso di mostrare e sottolineare le analogie che caratterizzano questi materiali fibrorinforzati. Sono stati affrontati inoltre gli aspetti legati alle fasi della costituzione di questi materiali sia da un punto di vista teorico sia da un punto di vista pratico. Infine è stato sviluppato un modello analitico basato sulla definizione di specifici diagrammi tensione-deformazione; i risultati di questo modello sono quindi stati confrontati con i dati sperimentali ottenuti in laboratorio.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanofiber yarns are important building blocks for making three-dimensional nanostructures, e.g. through a knitting or weaving process, with better mechanical properties than nanofiber nonwovens and well-controlled fibrous construction. However, it still remains challenging to produce quality nanofiber yarns in a sufficient rate. In this study, we have proven that online stretching during electrospinning of nanofiber yarns can considerably improve fiber alignment and molecular orientation within the yarn and increase yarn tensile strength, but reduce fiber/yarn diameters. By compensating twist during online stretching, the device can prepare nanofiber yarns with different stretch levels, but maintaining the same twist multiplier. This allows us to examine the effect of stretching on fiber and yarn morphology. It was interesting to find that on increasing the stretching ratio from 0% to 95%, the yarn diameter reduced from 135.1 ± 20.3 μm to 46.2 ± 10.2 μm, and the fiber diameter reduced from 998 ± 141 nm to 631 ± 98 nm, whereas the yarn tensile strength increased from 48.2 ± 5.6 MPa to 127.7 ± 5.4 MPa. Such an advanced yarn electrospinning technique can produce nanofiber yarn with an overall yarn production rate as high as 10 m min−1. This may be useful for production of nanofiber yarns for various applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aligned nanofiber mats were prepared from cellulose acetate using an electrospinning technique. The nanofiber mats were then immersed in an ethanol/acetone mixture. The solvent treatment led to denser, more compact fibrous structure and slight decrease in fiber alignment. It increased fiber diameter and polymer crystallinity within fibers. These effects resulted in increase in the tensile strength of fibrous mats. Solvent treatment may offer a simple, efficient approach to improve the mechanical strength of nanofibrous mats.