86 resultados para Ferromagnet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of biquadratic exchange in a one-dimensional ferromagnetic Heisenberg chain with an impurity spin is shown to change the nature of the impurity modes and its eigenvalues considerably which can be observed experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spin one Ising system with biquadratic exchange, is investigated, using Green's function technique in random phase approximation (RPA). Transition temperature Tc and <(Sz)2> at Tc, are found to increase with biquadratic exchange parameter α for sc, bcc and fcc lattices. The variation of <(Sz)2> at Tc with α is found to be the same for the above lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent discovery of spin ice is a spectacular example of the noncoplanar spin arrangements that can arise in the pyrochlore A2B2O7 structure. We present magnetic and thermodynamic studies on the metallic ferromagnet pyrochlore Sm2Mo2O7. Our studies, carried out on oriented crystals, suggest that the Sm spins have an ordered spin-ice ground state below about T*=15 K. The temperature and field evolution of the ordered spin-ice state are governed by an antiferromagnetic coupling between the Sm and Mo spins. We propose that as a consequence of a robust feature of this coupling, the tetrahedra aligned with the external field adopt a one-in, three-out spin structure as opposed to the three-in, one-out structure in dipolar spin ices, as the field exceeds a critical value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of different superconducting (S)/ferromagnetic (F) heterostructures grown by pulsed laser deposition reveal that the activation energy (U) for the vortex motion in a high T-c superconductor is reduced remarkably by the presence of F layers. The U exhibits a logarithmic dependence on the applied magnetic field in the S/F bilayers suggesting the existence of decoupled two-dimensional (2D) pancake vortices. This result is discussed in terms of the reduction in the effective S layer thickness and the weakening of the S coherence length due to the presence of F layers. In addition, the U and the superconducting T-c in YBa2Cu3O7-delta/La0.5Sr0.5CoO3 bilayers are observed to be much lower than in the YBa2Cu3O7-delta/La0.7Sr0.3MnO3 ones. This in turn suggests that the degree of spin polarization of the F layer might not play a crucial role for the suppression of superconductivity due to a spin polarized induced pair-breaking effect in S/F bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spin one XY ferromagnet with uniaxial anisotropy has been investigated, using Green's function technique in random phase approximation (RPA). The Green functions associated with the anisotropy energy are treated without decoupling. A set of coupled equations have been obtained to find the critical temperature Tc and left angle bracket(SZ)2right-pointing angle bracket at Tc as function of the uniaxial anisotropy parameter D. Tc and left angle bracket(SZ)2right-pointing angle bracket at Tc are found to increase with D. The results are compared with the earlier results obtained in the Narath type of RPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the influence of the ferromagnetic layer on the magnetic and transport properties of YBa2Cu3O7-delta in YBa2Cu3O7-delta (YBCO)/La0.7Sr0.3MnO3 (LSMO) bilayers. The temperature dependent dc magnetization study reveals the presence of magnetic anisotropy in YBCO/LSMO bilayer as compared to the pure YBCO layer. The ac susceptibility study on YBCO/LSMO bilayers reveals stronger pinning and the temperature dependent critical current is found to be less prone to temperature. Besides, the current (I) dependent electrical transport studies on YBCO/LSMO exhibit a significant reduction in the superconducting T-c with increase in I and it follows I-2/3 dependence in accord with the pair breaking effect. The higher reduction of superconducting T-c in YBCO/LSMO is believed to be due to the enhanced pair-breaking induced by the spin polarized carriers being injected into the superconductor. (C) 2011 American Institute of Physics. doi: 10.1063/1.3560029]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of a study of dc magnetization M(T,H), performed on a Nd(0.6)Pb(0.4)MnO(3) single crystal in the temperature range around T(C) (Curie temperature) which embraces the supposed critical region \epsilon\=\T-T(C)\/T(C)less than or equal to0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T(C)=156.47+/-0.06 K and the critical exponents beta=0.374+/-0.006 (from the temperature dependence of magnetization) and gamma=1.329+/-0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T(C),H) gives delta=4.54+/-0.10. Thus the scaling law gamma+beta=deltabeta is fulfilled. The critical exponents obey the single scaling equation of state M(H,epsilon)=epsilon(beta)f(+/-)(H/epsilon(beta+gamma)), where f(+) for T>T(C) and f(-) for Tferromagnets with short-range interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design, synthesis and magnetic characterization of thiophene-based models for the polaronic ferromagnet are described. Synthetic strategies employing Wittig and Suzuki coupling were employed to produce polymers with extended π-systems. Oxidative doping using AsF_5 or I_2 produces radical cations (polarons) that are stable at room temperature. Magnetic characterization of the doped polymers, using SQUID-based magnetometry, indicates that in several instances ferromagnetic coupling of polarons occurs along the polymer chain. An investigation of the influence of polaron stability and delocalization on the magnitude of ferromagnetic coupling is pursued. A lower limit for mild, solution phase I_2 doping is established. A comparison of the variable temperature data of various polymers reveals that deleterious antiferromagnetic interactions are relatively insensitive to spin concentration, doping protocols or spin state. Comparison of the various polymers reveals useful design principles and suggests new directions for the development of magnetic organic materials. Novel strategies for solubilizing neutral polymeric materials in polar solvents are investigated.

The incorporation of stable bipyridinium spin-containing units into a polymeric high-spin array is explored. Preliminary results suggest that substituted diquat derivatives may serve as stable spin-containing units for the polaronic ferromagnet and are amenable to electrochemical doping. Synthetic efforts to prepare high-spin polymeric materials using viologens as a spin source have been unsuccessful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3041477]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetoresistance across interfaces in the itinerant ferromagnetic oxide SrRuO3 have been studied. To define appropriately the interfaces, epitaxial thin films have been grown on bicrystalline and laser-patterned SrTiO3 substrates. Comparison is made with results obtained on similar experiments using the double-exchange ferromagnetic oxide La2/3Sr1/3MnO3. It is found that in SrRuO3, interfaces induce a substantial negative magnetoresistance, although no traces of the low-field spin tunneling magnetoresistance are found. We discuss these results on the basis of the distinct degree of spin polarization in ruthenates and manganites and the different nature of the surface magnetic layer formed at interfaces.