17 resultados para Ferrimagnetism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the magnetic properties of polycrystalline Dy1−xSrxMnO3 (0.1 ≤ x ≤ 0.4) with an orthorhombic (o) crystal structure. The parent compound, o-DyMnO3, undergoes an incommensurate antiferromagnetic ordering of the Mn spins at 39 K, followed by a spiral order at 18 K. A further antiferromagnetic transition at 5 K marks an ordering of the Dy-sublattice. Doping of divalent Sr ions results in diverse magnetization phenomena. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves display the presence of strongly interacting magnetic sublattices. For x = 0.1 and 0.2, a bifurcation between the ZFC and FC magnetization sets in at around 30 and 32 K, respectively. The ZFC magnetization peaks at about 5 K, indicating antiferromagnetic Dy-couplings similar to the case of o-DyMnO3. For x = 0.3, clear signatures of ferrimagnetism and strong anisotropy are found, including negative magnetization. The compound with x = 0.4 behaves as a spin glass, similar to Dy0.5Sr0.5MnO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied structural and magnetic properties of a series of insulating double perovskite compounds, La2-xSrxCuRuO6 (0 <= x <= 1), representing doping via A-site substitution. The end members La2CuRuO6 and LaSrCuRuO6 form in monoclinic structure while the intermediate Sr doped compounds stabilize in triclinic structure. The Cu and Ru ions sit on alternate B sites of the perovskite lattice with similar to 15% antisite defects in the undoped sample while the Sr-doped samples show a tendency to higher ordering at B sites. The undoped (x = 0) compound shows a ferrimagnetic-like behavior at low temperatures. In surprising contrast to the usual expectation of an enhancement of ferromagnetic interaction on doping, an antiferromagnetic-like ground state is realized for all doped samples (x > 0). Heat capacity measurements indicate the absence of any long-range magnetic order in any of these compounds. The magnetic relaxation and memory effects observed in all compounds suggest glassy dynamical properties associated with magnetic disorder and frustration. We show that the observed magnetic properties are dominated by the competition between the nearest-neighbor Ru-O-Cu 180 degrees superexchange interaction and the next-nearest-neighbor Ru-O-O-Ru 90 degrees superexchange interaction as well as by the formation of antisite defects with interchanged Cu and Ru positions. Our calculated exchange interaction parameters from first principles calculations for x = 0 and x = 1 support this interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1-xYxMnO3, for x=0.1-0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below T-N(Mn) approximate to 80 K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x < 0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1-xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed-metal metal-organic framework (MOF) compound NiMn2{C6H3(COO)(3)}(2)], I, is prepared hydrothermally by replacing one of the octahedral Mn2+ ions in Mn-3{C6H3(COO)(3)}(2)] by Ni2+ ions. Magnetic studies on I suggest antiferromagnetic interactions with weak canted antiferromagnetism below 8 K. On heating in flowing air I transforms to NiMn2O4 spinel at low temperature (T < 400 degrees C). The thermal decomposition of I at different temperatures results in NiMn2O4 with particle sizes in the nano regime. The nanoparticle nature of NiMn2O4 was confirmed using PXRD and TEM studies. Magnetic studies on the nanoparticles of NiMn2O4 indicate ferrimagnetism. The transition temperature of NiMn2O4 nanoparticles exhibits a direct correlation with the particle size. This study highlights the usefulness of MOF compound as a single-source precursor for the preparation of important ceramic oxides with better control on the stoichiometry and particle size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate in a simple model the surprising result that turning on an on-site Coulomb interaction U in a doped band insulator leads to the formation of a half-metallic state. In the undoped system, we show that increasing U leads to a first order transition at a finite value U-AF between a paramagnetic band insulator and an antiferomagnetic Mott insulator. Upon doping, the system exhibits half-metallic ferrimagnetism over a wide range of doping and interaction strengths on either side of U-AF. Our results, based on dynamical mean field theory, suggest a new route to half metallicity, and will hopefully motivate searches for new materials for spintronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O efeito magnetocalórico, base da refrigeração magnética, é caracterizado por duas quantidades: a variação isotérmica da entropia (ΔST) e a variação adiabática da temperatura (ΔTS); que são obtidas sob variações na intensidade de um campo magnético aplicado. Em sistemas que apresentam anisotropia magnética, pode‐se definir o efeito magnetocalórico anisotrópico, o qual, por definição, é calculado sob variações na direção de aplicação de um campo magnético cuja intensidade mantém‐se fixa, e é caracterizado por duas quantidades: a variação anisotrópico‐isotérmica da entropia (ΔSan) e a variação anisotrópico‐adiabática da temperatura (ΔTan). O efeito magnetocalórico e o efeito magnetocalórico anisotrópico foram estudados nos compostos intermetálicos formados por terras e outros materiais não magnéticos: RNi2, RNi5, RZn e Gd1‐nPrnAl2. Os cálculos foram feitos partindo de hamiltonianos modelo que incluem as interações de troca, Zeeman, de campo cristalino e quadrupolar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different compositions of Ni0,5-xCuxZn0,5Fe2O4 and Ni0,5-xCoxZn0,5Fe2O4 0 ≤ x ≤ 0.3 were synthesized ferrite y the citrate precursor method. The stoichiometric compositions were calcined in air at 350°C and then pressed into pellets and toroids. The pressed samples were sintered at temperatures of 1000, 1050 and 1100°C/3h in air control at the speed of heating and cooling. The calcined powders were characterized by XRD, TGA / DTG, FTIR, SEM and vibrating sample magnetometry (VSM) and the sintered samples by XRD, SEM, MAV, density and measurements of permeability and magnetic losses. There was pure phase formation ferrimagnetism applied at all temperatures except for A-I composition at all sintering temperatures and A-II only at a temperature of 1100°C. Crystallite sizes were obtained by Rietveld analysis, nanometer size from 11 to 20 nm for the calcined powders. For SEM, the sintered samples showed grain size between 1 and 10 micrometers. Bulk density (ρ) of sintered material presented to the Families almost linear behavior with increasing temperature and a tendency to decrease with increasing concentration of copper, different behavior of the B Family, where the increase in temperature decreased the density. The magnetic measurements revealed the powder characteristics of a soft ferrimagnetic material. Two processes of magnetization were considered, the superparamagnetism at low temperatures (350°C) and the formation of magnetic domains at higher temperatures. Obtaining the best parameters for P and B-II magnetic ferrites at high temperatures. The sintered material at 1000°C showed a relative permeability (μ) from 50 to 800 for the A Family and from 10 to 600 for the B Family. The samples sintered at 1100°C, B Family showed a variation from 10 to 1000 and the magnetic loss (tan δ) of A and B Families, around of 1. The frequency response of the toroidal core is in the range of 0.3 kHz. Several factors contribute to the behavior of microstructure considering the quantities μ and tan δ, such as the grain size, inter-and intragranular porosity, amount of grain boundary and the aspects of the dynamics of domain walls at high frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic properties of two spinel oxides solid solutions, Cul+xMn2-xO4 and Ni1+xMn2-xO4 are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105-110 K (for nickel-based spinels), independently of the x-content: the lower transition may be related to a Neel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni(2+)andCU(2+)). (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic studies in manganites of spinel structure have been undertaken. We report on the magnetic properties of two particular cases, in which one of the transition metals, Mg2+ is non-magnetic (NiMgxMn2-xO4) or presents a stable oxidation state, Cu2+ (CoxCuyMnzO4, x + y + z = 3). The magnetic behaviour is described with respect to varying contents of cobalt, copper or manganese. A ferrimagnetic transition is observed at 110-120 K, which depends on the cobalt content. Presence of copper increases the coercive field by a factor of ten with respect to the parent compound NiMn2O4. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the importance of (H2O)(6) clusters in controlling the properties of hexacyanoferrate (Prussian Blue) materials. A careful in situ study of compositional changes by using electrogravimetric techniques (in ac and dc modes) in hexacyanoferrates containing K+ alkali metals reveals the existence of a changeover in the properties of these films in a narrow potential range. Control of the compositional variation of the changeover is dependent on the K+ stoichiometric number in the compound structure. However, a specific K+ occupation in the compound structure activates the occupation of the (H2O)(6) cluster by H3O+ and/or H+, causing the changeover in the properties of hexacyanoferrate film. Thus, the information thus obtained is very useful for understanding the mechanisms involved in the electrochemical reversible switch between ferrimagnetism/paramagnetism, semiconductor/metal and electroluminescence/nonelectroluminescence properties of molecular cyanide materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and magnetic properties of the cubic spinel oxide Co 2MnO4 (Fd3m space group) doped with different concentrations of bismuth, were investigated by X-ray diffraction and SQUID magnetometry. The Bi3+ ions entering into the CoIII octahedral sites do not alter the effective moment, μeff ∼8.2 μB, whereas both the magnetization M50 kOe at the highest field (50 kOe) and the field-cooled MFC magnetizations increased when increasing the Bi content. The ferrimagnetic character of the parent compound, Co2MnO4, is maintained for all materials although the antiferromagnetic interactions Co2+-Co2+ are affected, resulting in higher values of the Curie-Weiss temperature. Due to the large ionic radius of Bi, octahedra distortions occur as well as valence fluctuations of the Mn ions, giving rise to Jahn-Teller effects and enhancing the exchange interactions. The off-center Bi3+ ion is responsible of non-centrosymmetric charge ordering and should lead to multiferroïsme conditions for the BixCo2-xMnO4 material. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the structural and magnetic properties of Co2MnO 4, partially substituted by Bi at the octahedral site. Bismuth enhances ferromagnetism due to a decrease of the Co2+-Co2+ antiferromagnetic interactions and an increase of the Mn3+-Mn 4+ exchanges. Spurious phases (magnetic and/or nonmagnetic oxides) can easily form because of the large differences between the ionic radii of Bi3+ and Co3+, hiding or altering the intrinsic physical properties of the main BixCo2-xMnO4 phase. An easy way to eliminate the secondary phases is using acid reagents. Short-time etching of Bi0.1Co1.9MnO4 using nitric acid was successfully used, keeping most of the properties of the initial compound, with no alteration of the crystallographic structure. Final stoichiometry was respected (∼Bi0.08Co1.82MnO4), meaning that the material after etching definitely contains bismuth elements in its structure and the observed properties are intrinsic to the oxide spinel. Additional experiments were performed as a function of the synthesis conditions, showing that an optimal pH value of 7 allowed the best magnetic response of the non-doped material. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a first combined environmental magnetic and geochemical investigation of a loess-paleosol sequence (<55 ka) from the Chuanxi Plateau on the eastern margin of the Tibetan Plateau. Detailed comparison between the Ganzi section and the Luochuan section from the Chinese Loess Plateau (CLP) allows quantification of the effects of provenance and climate on pedogenic magnetic enhancement in Chinese loess. Rare earth element patterns and clay mineral compositions indicate that the Ganzi loess originates from the interior of the Tibetan Plateau. The different Ganzi and CLP loess provenances add complexity to interpretation of magnetic parameters in terms of the concentration and grain size of eolian magnetic minerals. Enhanced paleosol magnetism via pedogenic formation of ferrimagnetic nanoparticles is observed in both sections, but weaker ferrimagnetic contributions, finer superparamagnetic (SP) particles and stronger chemical weathering are found in the Ganzi loess, which indicates the action of multiple pedogenic processes that are dominated by the combined effects of mean annual precipitation (MAP), potential evapotranspiration (PET), organic matter and aluminium content. Under relatively high MAP and low PET conditions, high soil moisture favours transformation of ferrimagnetic minerals to hematite, which results in a relatively higher concentration of hematite but weaker ferrimagnetism of Ganzi loess. Initial growth of superparamagnetic (SP) particles is also documented in the incipient loess at Ganzi, which directly reflects the dynamic formation of nano-sized pedogenic ferrimagnets. A humid pedogenic environment with more organic matter and higher Al content also helps to form finer SP particles. We therefore propose that soil water balance, rather than solely rainfall, dominates the type, concentration and grain size of secondary ferrimagnetic minerals produced by pedogenesis.