948 resultados para Fermentation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucoamylases have been used with alpha-amylases for the industrial conversion of starch into glucose. However, little is known about the properties of this glycosylated protein retained in the cell wall of Saccharomyces as well as its role in the saccharification and fermentation of amylaceous substrates, notably in high cell density processes. In most of the strains assayed, decreases in biomass formation were followed by increases in glucoamylase secretion (expressed as U/mg(biomass) in 1 ml of culture) when glucose was exchanged for starch as carbon source or the growth temperature was raised from 30 to 35 degrees C. Despite the losses in viability, significant increases in the activity of the wall fraction occurred when cultures of thermotolerant yeasts propagated at 30 degrees C or washed cells resuspended in buffer solution were heated to 60 degrees C for 60-80 min prior to amylolytic assays. Thus, intact cells of thermotolerant yeasts can be used as colloidal biocatalysts in starch degradation processes. (C) 2005 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comprehension of the structure of starch granules is important for the understanding of its physicochemical properties. Native and sour cassava starches after being analyzed with respect to their pasting properties and baking expansion capacity, were treated with 2.2 N HCl at 38 degreesC for a maximum of nine days. The starch granules remaining after lintnerization were analyzed for amylose content and intrinsic viscosity, by X-ray diffraction, scanning electron microscopy and chromatographic analysis. The results indicated that the acid hydrolysis on all starches occurred in two steps. The first one, with high hydrolysis rate, was characterized by a quick degradation of the amorphous part of the granules whereas the second step, with lower hydrolysis rate, was characterized by a higher resistance of the organized areas of the granules to acid treatment. Most of the amylose chains were found in the amorphous areas of starch granules only a small percentage was involved in the crystalline regions. The microscopic and chromatographic analysis demonstrated that the acid hydrolysis was not able to disrupt the entire granular crystalline structure. Fermented starch showed amylose and/or amylopectin chain fractions resistant to pullulanase, probably due to structural alterations during fermentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45 degrees C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65 degrees C at pH 6.5, and it was thermally stable up to 60 degrees C without substrate during 1 h in the presence of 10 mm CaCl2. The enzyme activity increased in the presence of Co2+, Ba2+, and Mn2+. Using maltodextrin as substrate, the K-m and K-cat were 1.65 mg/mL and 347.9 mu mol/mg.min, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we collect data from surveys of bloodstream Candida isolates performed in Brazil from 1996 to 2004. Besides, we analyzed the species distribution of bloodstream Candida isolates together with potential risk factors for candidemia and the susceptibility profile of these isolates in patients from Hospital das Clinicas in Goiaonia city, Brazil. Blood samples were collected in the admission day and on every 7 days, in the intensive care unit (ICU) of a tertiary hospital. Candida isolates were identified by standard protocols that included germ tube formation, chlamydoconidia production on cornmeal agar and sugar fermentation and assimilation tests. Data of patients were recorded and analyzed according to age at the time of diagnosis, gender and presence of potential risk factors. Statistical analysis was used to determine if the time of hospital permanence increased Candida colonization in ICU patients' blood. The antifungal susceptibility testing was performed by broth microdilution method according to document NCCLS/CLSI M27-A2. Among the 345 blood samples cultured, candidemia was recovered in 33 patients, which were isolated 51.5% of Candida non-albicans. Fungemia was associated with long-term hospitalization. Fluconazole, itraconzole, voriconazole and amphotericin B exhibited a potent activity against all isolates of Candida. Voriconazole MICs were much low for all isolates tested. This work confirms data of increase of Candida non-albicans species in bloodstream in ICU and shows that voriconazole in vitro activity was higher than those of itraconazole, fluconazole and amphotericin B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clavulanic acid (CA), a potent beta-lactamase inhibitor, is very sensitive to pH and temperature. It is produced by Streptomyces clavuligerus and to optimize both the fermentation step and the downstream process, the expression of the hydrolysis kinetics has to be determined. In the present work the CA degradation rate from various sources was investigated at temperatures of 10, 20, 25, 30 and 40degreesC and PH values of 6.2 and 7.0. The results showed that first-order kinetics explained very well the hydrolysis kinetics and the Arrhenius equation could be applied to establish a relationship between the degradation rate constant and temperature, at both pHs. It has been observed that CA from fermentation medium was much more unstable than that from standard solution and from a commercially available medicine. Also, it was observed that CA was more stable at PH 6.2 than at pH 7.0, irrespective of the CA source. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta-Glucosidase from the fungus Thermoascus aurantiacus grown oil semi-solid fermentation medium (using ground corncob as substrate) was partially purified in 5 steps - ultrafiltration, ethanol precipitation, gel filtration and 2 anion exchange chromatography runs, and characterized. After the first anion exchange chromatography, beta-glucosidase activity was eluted in 3 peaks (Gl-1, Gl-2, Gl-3). Only the Gl-2 and Gl-3 fractions were adsorbed on the gel matrix. Gl-2 and Gl-3 exhibited optimum pH at 4.5 and 4.0, respectively. The temperature optimum of both glucosidases was at 75-80 degreesC. The pH stability of Gl-2 (4.0-9.0) was higher than Gl-3 (5.5-8.5); both enzyme activities showed similar patterns of thermostability. Under conditions of denaturing gel chromatography the molar mass of Gl-2 and Gl-3 was 175 and 157 kDa, respectively. Using 4-nitrophenyl beta-D-glucopyranoside as substrate, K-m, values of 1.17 +/- 0.35 and 1.38 +/- 0.86 mmol/L were determined for Gl-2 and Gl-3, respectively. Both enzymes were inhibited by Ag+ and stimulated by Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of milk processing on rheological and textural properties of probiotic low-fat yogurt (fermented by two different starter cultures) was studied. Skim milk fortified with skim milk powder was subjected to three treatments: (1) thermal treatment at 85C for 30 min; (2) high hydrostatic pressure (HHP) at 676 MPa for 5 min; and (3) combined treatments of HHP (676 MPa for 5 min) and heat (85C for 30 min). The processed milk was fermented using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium longum at inoculation rates of 0.1 and 0.2%. Rheological parameters were determined and a texture profile analysis was carried out. Yogurts presented different rheological behaviors according to the treatment used, which could be attributed to structural phenomena. The combined HHP and heat treatment of milks resulted in yogurt gels with higher consistency index values than gels obtained from thermally treated milk. The type of starter culture and inoculation rate, providing different fermentation pathways, also affected the consistency index and textural properties significantly. The combined HHP and heat treatment of milks before fermentation, and an inoculation rate of 0.1% (for both cultures), led to desirable rheological and textural properties in yogurt, which presented a creamy and thick consistency that does not require the addition of stabilizers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in vitro gas production of four single roughages and their paired combinations (1:1 on dry matter basis) were evaluated. Two roughage samples (100 mg) per treatment were fermented with ruminal fluid during a 48 h incubation period. Total 48 h gas volumes of fermentation dry matter (DM), neutral detergent fiber (NDF) and soluble compounds in neutral detergent (NDS) were for sugarcane = 16.8, 11.2, 6.9 mL; sugarcane + corn silage = 20.1, 12.6, 9.1 mL; sugarcane + 60-day elephantgrass = 16.5, 17.6 mL; sugarcane + 180-day elephantgrass = 13.8, 8.2, 5.9 mL; corn silage = 18.8, 16.8, 4.7 mL; corn silage + 60-day elephantgrass = 16.3, 15.4, 2.4 mL; corn silage + 180-day elephantgrass = 16.1, 11.8, 4.2 mL; 60-day elephantgrass = 16.9, 19.0 mL and 180-day elephantgrass = fermented 10.7, 12.2 mL, respectively. The NDS gas production was not possible to estimate for sugarcane + 60-day elephantgrass, 60-day elephantgrass and 180-day elephantgrass. The present data shows that the curves subtraction method can be an option to evaluate the contribution of the soluble fractions in roughages to digestion kinetics. However, this method underestimates the NDS gas contribution when roughages are low in crude protein and soluble carbohydrates. It is advisable to directly apply the two-compartmental mathematical model to the digestion curves for roughage DM, when determining the NDS gas volume and the digestion rate. This method is more straightforward and accurate when compared to the curve subtraction method. Non-structural carbohydrates combined with fiber and protein promoted a positive associative effect in sugarcane + corn silage (50:50) mixture. Therefore, it can be concluded that the soluble fraction of roughages greatly contributes to gas production. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the different potential benefits of divergent fiber ingredients, the effect of 3 fiber sources on energy and macronutrient digestibility, fermentation product formation, postprandial metabolite responses, and colon histology of overweight cats (Felis catus) fed kibble diets was compared. Twenty-four healthy adult cats were assigned in a complete randomized block design to 2 groups of 12 animals, and 3 animals from each group were fed 1 of 4 of the following kibble diets: control (CO; 11.5% dietary fiber), beet pulp (BP; 26% dietary fiber), wheat bran (WB; 24% dietary fiber), and sugarcane fiber (SF; 28% dietary fiber). Digestibility was measured by the total collection of feces. After 16 d of diet adaptation and an overnight period without food, blood glucose, cholesterol, and triglyceride postprandial responses were evaluated for 16 h after continued exposure to food. on d 20, colon biopsies of the cats were collected under general anesthesia. Fiber addition reduced food energy and nutrient digestibility. of all the fiber sources, SF had the least dietary fiber digestibility (P < 0.05), causing the largest reduction of dietary energy digestibility (P < 0.05). The greater fermentability of BP resulted in reduced fecal DM and pH, greater fecal production [g/(cat x d); as-is], and greater fecal concentration of acetate, propionate, and lactate (P < 0.05). For most fecal variables, WB was intermediate between BP and SF, and SF was similar to the control diet except for an increased fecal DM and firmer feces production for the SF diet (P < 0.05). Postprandial evaluations indicated reduced mean glucose concentration and area under the glucose curve in cats fed the SF diet (P < 0.05). Colon mucosa thickness, crypt area, lamina propria area, goblet cell area, crypt mean size, and crypt in bifurcation did not vary among the diets. According to the fiber solubility and fermentation rates, fiber sources can induce different physiological responses in cats, reduce energy digestibility, and favor glucose metabolism (SF), or improve gut health (BP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response surface methodology as a tool for assessing the production of alginate and polyhydroxybutirate by Azotobacter vinelandii. Alginate is a polysaccharide extracted from cell walls of brown algae and used in the food, pharmaceuticals and biotech industries. Production is concentrated on the cultivation of brown seaweed, but several bacteria of the genus Pseudomonas and Azotobacter produce alginate. The chemical structure of alginates produced by algae is similar to those synthesized by A. vinelandii. The bacteria also produce intracellular polymers such as polyhydroxybutyrate (PHB), known as bioplastic. This work studied the simultaneous alginate and PHB production by A. vinelandii using sucrose and different parameters of fermentation in an orbital shaker. The optimal values for the production of these compounds were determined by the MSR. The first experiment was a 2(6-2) factorial design. The second was based on significant variables of the first, resulting in a full 3(3-0) factorial design. From the first to the second, an increase was observed in the PHB productivity from 12 to 45 mg g(-1) cell h(-1) and alginate from 100 to 1,600 mg g(-1) of cell h(-1). The productivity of both compounds was in the maximum incubation temperature of 62 degrees C, in the shortest time of incubation (18h) and the sucrose concentration, 11 g L(-1). In both experiments the PHB extracted presented purity of 94%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many countries, fermentation studies regarding the use of bacteria instead of yeasts to reduce the period of alcoholic fermentation have been carried out. In Brazil, all the industrial alcohol production is carried out by yeasts as fermentation microorganisms and little is known about other microorganisms with potential to produce alcohol industrially. Brazil stands out in the energy sector worldwide and thus some institutions have been selecting microorganisms which are more efficient in the alcohol production process. Alcoholic bacteria from species Zymomonas mobilis present technological characteristics with potential to be used for alcoholic fermentation at industrial scale, since it exhibits promising abilities to transform sugars into alcohol and carbon dioxide, at conditions similar to the ones required by yeasts. Zymomonas mobilis is a unique bacteria among the microbial world, with peculiar growth, energy production and response to culture conditions, causing a great interest in scientific, biotechnological and industrial fields. The bacteria's ability to make possible energy production in favor of product formation, respond to physical and chemical environmental manipulation as well as its limited product formation make it an ideal microorganism for the study and development of microbial processes for ethanol production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study had the aim of testing the effect of different fermentation periods on the germination and vigour of pitomba seeds. The experiment was carried out in the greenhouse of the Seed Section of the Agrarian Sciences Center of the Federal University of Paraiba, Areia, PB. The fruits were picked directly from maternal trees located in the same municipal district, peeled manually and fermented for 24, 48, 72, 96 and 120 hours, in addition to seeds with pulp (without fermentation). The experiment was entirely randomized with four replications of 25 seeds per treatment. After each fermentation period, the seeds were washed in tap water and left in the laboratory environment for 24 hours on paper towels. Water content, germination and vigor (germination velocity index, seedling length and dry mass., relative frequency and medium time of germination) were measured. Less water content was shown in the seeds fermented for 96 hours (38.5%), while the largest germination percentages were observed after 76 hours of fermentation (93%). In relation to vigour, the best values occurred with 86 and 105 hours of fermentation. Fermentation is recommended for up to 105 hours as appropriate to removal of the pitomba seed aril.