1000 resultados para Fe Limitation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66 degrees N between 15 and 20 degrees W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the EBENE cruise (November 1996), distributions of biogenic silica concentration and production rates were investigated in the surface waters of the equatorial Pacific (180°W, from 8°S to 8°N), with particular emphasis on the limitation of the biogenic silica production by ambient silicic acid concentrations. Integrated over the depth of the euphotic layer, concentrations of biogenic silica and production rates were maximum at the Equator (8.0 and 2.6 mmol/m**2/d) and decreased more or less symmetrically polewards. Contribution of diatoms to the new production was estimated indirectly, comparing biogenic silica production rates and available data of new and export production in the same area. This comparison shows that new production in the equatorial area could mostly be sustained by diatoms, accounting for the major part of the exported flux of organic carbon. Kinetics experiments of silicic acid enrichment were performed. Half saturation constants were 1.57 µM at 3°S and 2.42 µM at the Equator close to the ambient concentrations. The corresponding Vmax values for Si uptake were 0.028/h at 3°S and 0.052/h at the equator. Experiments also show that in situ rates were restricted to 13-78% of Vmax, depending on ambient silicic acid concentrations. This work provides the first direct evidence that the rate of Si uptake by diatom populations of the equatorial Pacific is limited by the ambient concentration of silicic acid. However, such Si limitation might not be sufficient in itself to explain the low diatom growth rates observed, and additional limitation is suggested. One hypothesis that is consistent with the results of Fe limitation studies is that Fe and Si limitations may interact, rather than just being a mutually exclusive explanation for the HNLC character of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first comprehensive dataset (492 samples) of dissolved Mn in the Southern Ocean shows extremely low values of 0.04 up to 0.64 nM in the surface waters and a subsurface maximum with an average concentration of 0.31 nM (n=20; S.D.=0.08 nM). The low Mn in surface waters correlates well with the nutrients PO4 and NO3 and moderately well with Si(OH)4 and fluorescence. Furthermore, elevated concentrations of Mn in the surface layer coincide with elevated Fe and light transmission and decreased export (234Th/238U deficiency) and fluorescence. It appears that Mn is a factor of importance in partly explaining the HNLC conditions in the Southern Ocean, in conjunction with significant controls by the combination of Fe limitation and light limitation. No input of Mn from the continental margins was observed. This is ascribed to the protruding continental ice sheet that covers the shelf and shuts down the usual biological production, microbial breakdown and sedimentary geochemical cycling. The low concentrations of Mn in the deep ocean basins (0.07-0.23 nM) were quite uniform, but some elevations were observed. The highest deep concentrations of Mn were observed at the Bouvet Triple Junction region and coincided with high concentrations of Fe and are deemed to be from hydrothermal input. The deep basins on both sides of the ridge were affected by this input. In the deep Weddell Basin the input of Weddell Sea Bottom Water appears to be the source of the slightly elevated concentrations of Mn in this water layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No clear scenario has yet been able to explain the full carbon drawdown that occurred during the Last Glacial Maximum (LGM); however, increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron (Fe) fertilisation has been proposed to have provided a key mechanism affecting the air-sea partitioning of carbon. We chronicle changes in marine EP based on four sediment cores in Subtropical Waters (STW) and SAZ around New Zealand since the LGM. For the first time in this region, we present 230-Thorium normalised fluxes of biogenic opal, carbonate (CaCO3), excess Barium (xsBa), and organic Carbon (Corg). In STW and SAZ, these flux variations show that EP did not change markedly since the LGM. The only exception was a site in the SAZ close to the STF, where we suggest the STF shifted over the core site, driving increased EP. To understand why EP was mostly low and constant we investigated dust deposition changes by measuring lithogenic fluxes at the four sites. These data are coherent with an increased dust deposition in the southwest Pacific during the LGM. Additionally, we infer an increased lithogenic material discharge from erosion and glacier melts during the deglaciation, limited to the Campbell Plateau. Therefore, we propose that even though increased glacial dust deposition may have relieved Fe limitation within the SAZ, the availability of silicic acid (Si(OH)4) limited any resultant increase in carbon export during the LGM. Consequently, we infer low Si(OH)4 concentrations in the SAZ that have not significantly changed since the LGM. This result suggests that both Si(OH)4 and Fe co-limit EP in the SAZ around New Zealand, which would be consistent with modern process studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In China, especially in Three-Gorges Reservoir, our knowledge of the algal growth potential and nutrient limitation was still limited. In the spring of 2006, the water column ratios of total nitrogen/total phosphorus were investigated and algal bioassays performed to determine algal growth potential of waters and nutrient limitation of mainstream and Xiangxi Bay of Three-Gorges Reservoir. The results showed sampling sites in mainstream were co-limited by N and P or P-limited alone, and sites in Xiangxi Bay were N-limited alone. Fe likely played an important role in determining the appearance and disappearance of algal blooms of Three-Gorges Reservoir. Native algae, Pseudokirchneriella subcapitata and Cyclotella meneghiniana, had high growth potential in Three-Gorges Reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae has two separate systems for zinc uptake. One system has high affinity for substrate and is induced in zinc-deficient cells. The second system has lower affinity and is not highly regulated by zinc status. The ZRT1 gene encodes the transporter for the high-affinity system, called Zrt1p. The predicted amino acid sequence of Zrt1p is similar to that of Irt1p, a probable Fe(II) transporter from Arabidopsis thaliana. Like Irt1p, Zrt1p contains eight potential transmembrane domains and a possible metal-binding domain. Consistent with the proposed role of ZRT1 in zinc uptake, overexpressing this gene increased high-affinity uptake activity, whereas disrupting it eliminated that activity and resulted in poor growth of the mutant in zinc-limited media. Furthermore, ZRT1 mRNA levels and uptake activity were closely correlated, as was zinc-limited induction of a ZRT1-lacZ fusion. These results suggest that ZRT1 is regulated at the transcriptional level by the intracellular concentration of zinc. ZRT1 is an additional member of a growing family of metal transport proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrotalcites of formula Mg6 (Fe,Al)2(OH)16(CO3).4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio have been successfully synthesised. The XRD patterns show variation in the d-spacing attributed to the size of the cation. Raman and infrared bands in the OH stretching region are assigned to (a) brucite layer OH stretching vibrations (b) water stretching bands and (c) water strongly hydrogen bonded to the carbonate anion. Multiple (CO3)2- symmetric stretching bands suggest that different types of (CO3)2- exist in the hydrotalcite interlayer. Increasing the cation ratio (Mg/Al,Fe) resulted in an increase in the combined intensity of the 2 Raman bands at around 3600 cm-1, attributed to Mg-OH stretching modes, and a shift of the overall band profile to higher wavenumbers. These observations are believed to be a result of the increase in magnesium in the structure. Raman spectroscopy shows a reduction in the symmetry of the carbonate, leading to the conclusion that the anions are bonded to the brucite-like hydroxyl surface and to the water in the interlayer. Water bending modes are identified in the infrared spectra at positions greater than 1630 cm-1, indicating the water is strongly hydrogen bonded to both the interlayer anions and the brucite-like surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selected arsenite minerals leiteite, reinerite and cafarsite have been studied by Raman spectroscopy. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. The Raman spectrum of leiteite shows bands at 804 and 763 cm-1 assigned to the As2O42- symmetric and antisymmetric stretching modes. The most intense Raman band of leiteite is the band at 457 cm-1 and is assigned to the ν2 As2O42- bending mode. A comparison of the Raman spectrum of leiteite is made with the arsenite minerals reinerite and cafarsite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.