986 resultados para FORAGE QUALITY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pastures containing alfalfa-smooth bromegrass or smooth bromegrass were stocked with .6, .8, or 1.0 cow-calf units per acre to compare cow and calf production in rotational grazing systems managed for optimum forage quality. To remove excess forage early in the grazing season, yearling heifers grazed with the cows in each pasture at a stocking rate of .6 heifers per acre for the first 28 days of grazing. Live forage density and days of grazing per paddock were estimated by sward height. Cows, calves, and heifers were weighed and cows condition scored every 28 days. All cows grazed for 140 days except those grazing the smooth bromegrass pasture stocked at 1.0 cow-calf units per acre; these were removed after 119 days in 1994 and 129 days in 1995 because of lack of forage. Alfalfa-grass pastures tended to have a more consistent supply of forage over the grazing season than the bromegrass pastures. Cows grazing the alfalfa-cool season grass pastures had greater seasonal weight gains and body condition score increases and lower heifer weight gains than the smooth bromegrass pastures. Daily and total calf weight gains and total animal production also tended to be greater in alfalfa-cool season grass pastures. Increasing stocking rates resulted in significantly lower condition increases and heifer weight gains, while increasing the amounts of calf and total growing animal produced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: The objective of this study was to evaluate the effect of seasons under a tropical climate on forage quality, aswell the effect of an Urochloa brizantha cv. Marandu grazing system on enteric methane (CH4) emissions fromNellore cattle in the Southeast region of Brazil. Sixteen Nellore steers (18 months old and initial weight 318.0 ± 116.59 kg of LW; final weight 469 ± 98.50 kg of LW) were used for a trial period of 10 months, with four collection periods in winter (August), spring (December), summer (February) and autumn (May). Each collection period consisted of 28 days, corresponding to the representative month of each season where the last six days were designed for methane data collection. Animals were randomly distributed within 16 experimental plots, distributed in four random blocks over four trial periods. CH4 emissions were determined using the sulphur hexafluoride (SF6) tracer gas technique measured by gas chromatography and fluxes of CH4 calculated. The forage quality was characterized by higher CP and IVDMD and lower lignin contents in spring, differing specially from winter forage. Average CH4 emissions were between 102.49 and 220.91 g d-1 (37.4 to 80.6 kg ani-1 yr-1); 16.89 and 30.20 g kg-1 DMI; 1.35 and 2.90 Mcal ani-1 d-1; 0.18 and 0.57 g kg-1 ADG-1 and 5.05 and 8.76% of GE. Emissions in terms of CO2 equivalents were between 4.68 and 14.22 g CO2-eq-1 g-1 ADG. Variations in CH4 emissions were related to seasonal effect on the forage quality and variations in dry matter intake.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pen feeding study was carried out over 70 days to determine the effects of monensin (M) inclusion in two commercial supplements designed to provide different planes of nutrition to recently weaned steers. Thirty Bos indicus crossbred steers (191.4 +/- s.d. 7.1 kg) were individually fed a low quality pangola grass hay (57 g crude protein/kg DM; 497 g/kg DM digestibility) ad libitum (Control) with either a urea/molasses-based supplement of Rumevite Maxi-graze 60 Block (B), fed at 100 g/day, or grain-based Rumevite Weaner Pellets (WP), fed at 7.5 g/kg liveweight (W).day, both with and without M, viz. B, B+M, WP and WP+M, respectively. There were no significant interactions between supplement type and M inclusion for any measurement. Growth rates (main effects) averaged 0.17, 0.35 and 0.58 kg/day for the Control, B and WP supplements, respectively, with all means different (P < 0.05), while the response (P < 0.05) to M across supplement type was 0.11 kg/day. Hay DM intake was similar for the Control and B treatments (18.6 and 19.6 g/kg W.day) but was reduced (P < 0.05) with the WP supplement (16.8 g/kg W.day) while corresponding total DM intakes increased from 18.6 to 20.0 to 23.5 g/kg W.day (all differences P < 0.05), respectively. Monensin inclusion in the supplements did not affect supplement, hay or total DM intake. Inclusion of of M in supplements for grazing weaners in northern Australia may increase survival rates although the effect of M with cattle at liveweight maintenance or below requires further investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sown pasture rundown and declining soil fertility for forage crops are too serious to ignore with losses in beef production of up to 50% across Queensland. The feasibility of using strategic applications of nitrogen (N) fertiliser to address these losses was assessed by analysing a series of scenarios using data drawn from published studies, local fertiliser trials and expert opinion. While N fertilser can dramatically increase productivity (growth, feed quality and beef production gains of over 200% in some scenarios), the estimated economic benefits, derived from paddock level enterprise budgets for a fattening operation, were much more modest. In the best-performing sown grass scenarios, average gross margins were doubled or tripled at the assumed fertiliser response rates, and internal rates of return of up to 11% were achieved. Using fertiliser on forage sorghum or oats was a much less attractive option and, under the paddock level analysis and assumptions used, forages struggled to be profitable even on fertile sites with no fertiliser input. The economics of nitrogen fertilising on grass pasture were sensitive to the assumed response rates in both pasture growth and liveweight gain. Consequently, targeted research is proposed to re-assess the responses used in this analysis, which are largely based on research 25-40 years ago when soils were generally more fertile and pastures less rundown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Animals that hoard food to mediate seasonal deficits in resource availability might be particularly vulnerable to climate-mediated reductions in the quality and accessibility of food during the caching season. Central-place foragers might be additionally impacted by climatic constraints on their already restricted foraging range. Aims: We sought evidence for these patterns in a study of the American pika (Ochotona princeps), a territorial, central-place forager sensitive to climate. Methods: Pika food caches and available forage were re-sampled using historical methods at two long-term study sites, to quantify changes over two decades. Taxa that changed in availability or use were analysed for primary and secondary metabolites. Results: Both sites trended towards warmer summers, and snowmelt trended earlier at the lower latitude site. Graminoid cover increased at each site, and caching trends appeared to reflect available forage rather than primary metabolites. Pikas at the lower latitude site preferred species higher in secondary metabolites, known to provide higher-nutrient winter forage. However, caching of lower-nutrient graminoids increased in proportion with graminoid availability at that site. Conclusions: If our results represent trends in climate, cache quality and available forage, we predict that pikas at the lower latitude site will soon face nutritional deficiencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two experiments evaluated the influence of supplement composition on ruminal forage disappearance, performance, and physiological responses of Angus x Hereford cattle consuming a low-quality cool-season forage (8.7% CP and 57% TDN). In Exp. 1, 6 rumen-fistulated steers housed in individual pens were assigned to an incomplete 3 x 2 Latin square design containing 2 periods of 11 d each and the following treatments: 1) supplementation with soybean meal (PROT), 2) supplementation with a mixture of cracked corn, soybean meal, and urea (68:22:10 ratio, DM basis; ENER), or 3) no supplementation (CON). Steers were offered meadow foxtail (Alopecurus pratensis L.) hay for ad libitum consumption. Treatments were provided daily at 0.50 and 0.54% of shrunk BW/steer for PROT and ENER, respectively, to ensure that PROT and ENER intakes were isocaloric and isonitrogenous. No treatment effects were detected on rumen disappearance parameters of forage DM (P >= 0.33) and NDF (P >= 0.66). In Exp. 2, 35 pregnant heifers were ranked by initial BW on d -7 of the study, allocated into 12 feedlot pens (4 pens/treatment), and assigned to the same treatments and forage intake regimen as in Exp. 1 for 19 d. Treatments were fed once daily at 1.77 and 1.92 kg of DM/heifer for PROT and ENER, respectively, to achieve the same treatment intake as percent of initial BW used in Exp. 1 (0.50 and 0.54% for PROT and ENER, respectively). No treatment effects (P = 0.17) were detected on forage DMI. Total DMI was greater (P < 0.01) for PROT and ENER compared with CON and similar between PROT and ENER (P = 0.36). Accordingly, ADG was greater (P = 0.01) for PROT compared with CON, tended to be greater for ENER compared with CON (P = 0.08), and was similar between ENER and PROT (P = 0.28). Heifers receiving PROT and ENER had greater mean concentrations of plasma glucose (P = 0.03), insulin (P <= 0.09), IGF-I (P <= 0.04), and progesterone (P = 0.01) compared to CON, whereas ENER and PROT had similar concentrations of these variables (P >= 0.15). A treatment x hour interaction was detected (P < 0.01) for plasma urea N (PUN), given that PUN concentrations increased after supplementation for ENER and PROT (time effect, P < 0.01) but did not change for CON (time effect, P = 0.62). In conclusion, beef cattle consuming low-quality cool-season forages had similar ruminal forage disappearance and intake, performance, and physiological status if offered supplements based on soybean meal or corn at 0.5% of BW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of defoliation on Amarillo (Arachis pintoi cv. Amarillo) was studied in a glasshouse and in mixed swards with 2 tropical grasses. In the glasshouse, Amarillo plants grown in pots were subjected to a 30/20°C or 25/15°C temperature regime and to defoliation at 10-, 20- or 30-day intervals for 60 days. Two field plot studies were conducted on Amarillo with either irrigated kikuyu (Pennisetum clandestinum) in autumn and spring or dryland Pioneer rhodes grass (Chloris gayana) over summer and autumn. Treatments imposed were 3 defoliation intervals (7, 14 and 28 days) and 2 residual heights (5 and 10 cm for kikuyu; 3 and 10 cm for rhodes grass) with extra treatments (56 days to 3 cm for both grasses and 21 days to 5 cm for kikuyu). Defoliation interval had no significant effect on accumulated Amarillo leaf dry matter (DM) at either temperature regime. At the higher temperature, frequent defoliation reduced root dry weight (DW) and increased crude protein (CP) but had no effect on stolon DW or in vitro organic matter digestibility (OMD). On the other hand, at the lower temperature, frequent defoliation reduced stolon DW and increased OMD but had no effect on root DW or CP. Irrespective of temperaure and defoliation, water-soluble carbohydrate levels were higher in stolons than in roots (4.70 vs 3.65%), whereas for starch the reverse occured (5.37 vs 9.44%). Defoliating the Amarillo-kikuyu sward once at 56 days to 3 cm produced the highest DM yield in autumn and sprong (582 and 7121 kg/ha DM, respectively), although the Amarillo component and OMD were substantially reduced. Highest DM yields (1726 kg/ha) were also achieved in the Amarillo-rhodes grass sward when defoliated every 56 days to 3 cm, although the Amarillo component was unaffected. In a mixed sward with either kikuyu or rhodes grass, the Amarillo component in the sward was maintained up to a 28-day defoliation interval and was higher when more severely defoliated. The results show that Amarillo can tolerate frequent defoliation and that it can co-exist with tropical grasses of differing growth habits, provided the Amarillo-tropical grass sward is subject to frequent and severe defoliation.