244 resultados para FGF


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity affects sex hormone secretion, which can negatively influence prostatic structure, homeostasis, and disease. This investigation aimed to evaluate the repercussions of obesity induced by a high-fat diet on the rat prostate, with or without treatment with the aromatase inhibitor, Letrozole. Adult Wistar rats were fed a high-fat diet (20% saturated fat, O) for 15 weeks to induce obesity or received a balanced diet (4% fat, C). Then, a group of C and O rats were daily treated with Letrozole (1 mg/kg b.w. per day) for 2 weeks (CL and OL, respectively). Subsequently, ventral prostate was processed for analysis by transmission electron microscopy, immunohistochemistry, and Western blotting. Obesity decreased 70% of the testosterone plasma level. The prostate showed epithelial atrophy and dilated acini in the intermediate portion and epithelial wrinkling in the distal tips. The relative frequency of smooth muscle alpha-actin in the O group increased by 67%. Ultrastructurally, epithelial cells in obese animals presented altered secretory organelles, lipid droplets, and thicker subjacent fibromuscular layer. Letrozole treatment caused a partial restoration of the prostatic changes caused by obesity. Obesity increased the prostatic content of fibroblast growth factor-2 (FGF-2) by 150%, and Letrozole treatment increased this protein even more in the control and obese groups. This investigation shows that obesity provokes structural and ultrastructural changes in the epithelium of rat prostate; these changes might affect gland homeostasis and physiology. The epithelial and smooth muscle cell hyperplasia and increased FGF-2 expression observed in this experimental model of obesity/insulin-resistance might explain the high frequency of benign prostatic hyperplasia in insulin-resistant men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciências Fisiológicas - FOA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. Methods Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. Results Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. Conclusion FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the FGF receptor family. It is expressed at very low levels in a great variety of cell lines and at relatively high levels in SW1353 chondrosarcoma cells, MG63 osteosarcoma cells and A204 rhabdomyosarcoma cells. Screening of 241 different human tumors with the help of a cancer profiling array suggested major alterations in the relative expression of FGFRL1 in ovarian tumors. Five distinct ovary tumors were therefore analyzed by quantitative and competitive PCR. Several tumors were found to exhibit a significant decrease in the expression of FGFRL1 in the tumor tissue relative to the matched control tissue. One ovarian tumor showed a 25-fold increase in the relative expression. Since FGFRL1 appears to be involved in the control of cell proliferation and differentiation, its aberrant expression might contribute to the development and progression of ovarian tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FGFRL1 is a novel FGF receptor that lacks the intracellular tyrosine kinase domain. While mammals, including man and mouse, possess a single copy of the FGFRL1 gene, fish have at least two copies, fgfrl1a and fgfrl1b. In zebrafish, both genes are located on chromosome 14, separated by about 10 cM. The two genes show a similar expression pattern in several zebrafish tissues, although the expression of fgfrl1b appears to be weaker than that of fgfrl1a. A clear difference is observed in the ovary of Fugu rubripes, which expresses fgfrl1a but not fgfrl1b. It is therefore possible that subfunctionalization has played a role in maintaining the two fgfrl1 genes during the evolution of fish. In human beings, the FGFRL1 gene is located on chromosome 4, adjacent to the SPON2, CTBP1 and MEAEA genes. These genes are also found adjacent to the fgfrl1a gene of Fugu, suggesting that FGFRL1, SPON2, CTBP1 and MEAEA were preserved as a coherent block during the evolution of Fugu and man.