522 resultados para FALCIPARUM MEROZOITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1 alpha previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1 alpha-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1 alpha antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca(2+) levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca(2+) increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca(2+) levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca(2+) in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca(2+)](c). Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca(2+)](c) in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection [1-3]. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans [4-7] and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human malaria parasite Plasmodium falciparum expresses erythrocyte-surface directed variant antigens which are important virulence factors Many are transcribed from multigene families and presumably their mode of expression is strictly controlled to guarantee immune evasion in the human host. In order to elucidate the dynamics of rif transcription and to investigate if rif switching is comparable to var switching we monitored rif variant gene expression in parasites with different cytoadhesive properties as well as after a number of reinvasions. We found identical transcripts in parasite lines with different adhesive phenotypes suggesting that rif genes do not have a critical role in determining the cytoadhesion specificity of infected erythrocytes. We show for the first time that rif genes may show a conserved mode of transcription, maintaining the previously dominant rif transcript in subsequent reinvasions, but also observed rapid switching at rates up to 45% per generation, much higher than for the var gene family. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum Populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower Virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the Study period. We Suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune evasion by Plasmodium falciparum is favored by extensive allelic diversity of surface antigens. Some of them, most notably the vaccine-candidate merozoite surface protein (MSP)-1, exhibit a poorly understood pattern of allelic dimorphism, in which all observed alleles group into two highly diverged allelic families with few or no inter-family recombinants. Here we describe contrasting levels and patterns of sequence diversity in genes encoding three MSP-1-associated surface antigens of P. falciparum, ranging from an ancient allelic dimorphism in the Msp-6 gene to a near lack of allelic divergence in Msp-9 to a more classical multi-allele polymorphism in Msp-7 Other members of the Msp-7 gene family exhibit very little polymorphism in non-repetitive regions. A comparison of P. falciparum Msp-6 sequences to an orthologous sequence from P. reichenowi provided evidence for distinct evolutionary histories of the 5` and 3` segments of the dimorphic region in PfMsp-6, consistent with one dimorphic lineage having arisen from recombination between now-extinct ancestral alleles. In addition. we uncovered two surprising patterns of evolution in repetitive sequence. Firsts in Msp-6, large deletions are associated with (nearly) identical sequence motifs at their borders. Second, a comparison of PfMsp-9 with the P. reichenowi ortholog indicated retention of a significant inter-unit diversity within an 18-base pair repeat within the coding region of P. falciparum, but homogenization in P. reichenowi. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC(50)] of 20.3 +/- 1.0 mu M). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we show that intraerythrocytic stages of Plasmodium falciparum have an active pathway for biosynthesis of menaquinone. Kinetic assays confirmed that plasmodial menaquinone acts at least in the electron transport. Similarly to Escherichia coli, we observed increased levels of menaquinone in parasites kept under anaerobic conditions. Additionally, the mycobacterial inhibitor of menaquinone synthesis Ro 48-8071 also suppressed menaquinone biosynthesis and growth of parasites, although off-targets may play a role in this growth-inhibitory effect. Due to its absence in humans, the menaquinone biosynthesis can be considered an important drug target for malaria. (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Plasmodium falciparum var gene family encodes large variant antigens, which are important virulence factors, and also targets of the humoral host response. The frequently observed mild outcomes of falciparum malaria in many places of the Amazon area prompted us to ask whether a globally restricted variant (var) gene repertoire is present in currently circulating and older isolates of this area. By exhaustive analysis of var gene tags from 89 isolates and clones taken during many years from all over the Brazilian Amazon, we estimate that there are probably no more than 350-430 distinct sequence types, less than for any similar sized area studied so far. Detailed analysis of the var tags from genetically distinct clones obtained from single isolates revealed restricted and redundant repertoires suggesting either a low incidence of infective bites or restricted variant gene diversity in inoculated parasites. Additionally, we found a structuring of var gene repertoires observed as a higher pairwise typing sharing in isolates from the same microregion compared to isolates from different regions. Fine analysis of translated var tags revealed that certain Distinct Sequence Identifiers (DSIDs) were differently represented in Brazilian/South American isolates when compared to datasets from other continents. By global alignment of worldwide var DBL alpha sequences and sorting in groups with more than 76% identity, 125 clusters were formed and more than half of all genes were found in nine clusters with 50 or more sequences. While Brazilian/South American sequences were represented only in 64 groups, African sequences were found in the majority of clusters. DSID type 1 related sequences accumulated almost completely in one single cluster, indicating that limited recombination occurs in these specific var gene types. These data demonstrate the so far highest pairwise type sharing values for the var gene family in isolates from all over an entire subcontinent. The apparent lack of specific sequences types suggests that the P. falciparum transmission dynamics in the whole Amazon are probably different from any other endemic region studied and possibly interfere with the parasite`s ability to efficiently diversify its variant gene repertoires. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine repeat antigens (SERAs) are a family of secreted “cysteine-like” proteases of Plasmodium parasites. Several SERAs possess an atypical active-site serine residue in place of the canonical cysteine. The human malaria parasite Plasmodium falciparum possesses six “serine-type” (SERA1 to SERA5 and SERA9) and three “cysteine-type” (SERA6 to SERA8) SERAs. Here, we investigate the importance of the serine-type SERAs to blood-stage parasite development and examine the extent of functional redundancy among this group. We attempted to knock out the four P. falciparum serine-type SERA genes that have not been disrupted previously. SERA1, SERA4, and SERA9 knockout lines were generated, while only SERA5, the most strongly expressed member of the SERA family, remained refractory to genetic deletion. Interestingly, we discovered that while SERA4-null parasites completed the blood-stage cycle normally, they exhibited a twofold increase in the level of SERA5 mRNA. The inability to disrupt SERA5 and the apparent compensatory increase in SERA5 expression in response to the deletion of SERA4 provides evidence for an important blood-stage function for the serine-type SERAs and supports the notion of functional redundancy among this group. Such redundancy is consistent with our phylogenetic analysis, which reveals a monophyletic grouping of the serine-type SERAs across the genus Plasmodium and a predominance of postspeciation expansion. While SERA5 is to some extent further validated as a target for vaccine and drug development, our data suggest that the expression level of other serine-type SERAs is the only barrier to escape from anti-SERA5-specific interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The virulence of the malaria parasite, Plasmodium falciparum, is due in large part to the way in which it modifies the membrane of its erythrocyte host. In this work we have used confocal microscopy and fluorescence recovery after photo-bleaching to examine the lateral mobility of host membrane proteins in erythrocytes infected with P falciparum at different stages of parasite growth. The erythrocyte membrane proteins band 3 and glycophorin show a marked decrease in mobility during the trophozoite stage of growth. Erythrocytes infected with a parasite strain that does not express the knob-associated histidine-rich protein show similar effects, indicating that this parasite protein does not contribute to the immobilization of the host proteins. Erythrocytes infected with ring-stage parasites exhibit intermediate mobility indicating that the parasite is able to modify its host prior to its active feeding stage.