13 resultados para Exotoxins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological studies of Staphylococcus aureus have shown a relation between certain clones and the presence of specific virulence genes, but how this translates into virulence-associated functional responses is not fully elucidated. Here we addressed this issue by analyses of community-acquired S. aureus strains characterized with respect to antibiotic resistance, ST types, agr types, and virulence gene profiles. Supernatants containing exotoxins were prepared from overnight bacterial cultures, and tested in proliferation assays using human peripheral blood mononuclear cells (PBMC). The strains displayed stable phenotypic response profiles, defined by either a proliferative or cytotoxic response. Although, virtually all strains elicited superantigen-mediated proliferative responses, the strains with a cytotoxic profile induced proliferation only in cultures with the most diluted supernatants. This indicated that the superantigen-response was masked by a cytotoxic effect which was also confirmed by flow cytometry analysis. The cytotoxic supernatants contained significantly higher levels of alpha-toxin than did the proliferative supernatants. Addition of alpha-toxin to supernatants characterized as proliferative switched the response into cytotoxic profiles. In contrast, no effect of Panton Valentine Leukocidin, delta-toxin or phenol soluble modulin alpha-3 was noted in the proliferative assay. Furthermore, a significant association between agr type and phenotypic profile was found, where agrII and agrIII strains had predominantly a proliferative profile whereas agrI and IV strains had a predominantly cytotoxic profile. The differential response profiles associated with specific S. aureus strains with varying toxin production could possibly have an impact on disease manifestations, and as such may reflect specific pathotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of alpha-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of alpha-toxin, and triggered limited tissue damage. alpha-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure alpha-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of alpha-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of alpha-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against alpha-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The results reveal that the combination and levels of alpha-toxin and PVL correlate with tissue pathology and clinical outcome associated with pneumonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA alleles presenting the peptide, and imply that construction of future epitope string vaccines which are immunogenic across a wide range of HLA alleles could benefit from a combination of both cryptic and immunodominant anthrax epitopes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The number of Escherichia coli in the gut of Crohn's disease (CD) patients is higher than that of normal subjects, but the virulence potential of these bacteria is not fully known. Previous studies have shown that these E. coli are closely related to extraintestinal pathogenic categories (ExPEC), are able to invade epithelial cells, and usually do not produce exotoxins. We report here the detection, in a CD patient, of an E. coli which belongs to a classical enteropathogenic (EPEC) serotype and displays virulence markers of enteroinvasive (EIEC), enteroaggregative (EAEC) and enterohemorrhagic (EHEC) pathotypes. Methods: The E. coli strain was isolated, in 2009, by classical bacteriological procedures from a 56 year old woman who underwent ileo-terminal resection 1 year before, due to intestinal obstruction. The bacterial characterization was carried out by in vitro adhesion and invasion assays to cultured epithelial cells and macrophages and screening by PCR to identify virulence genetic markers of diarrheogenic E. coli (DEC) and to detect one of the gene combinations which define the phylogroups of the E. coli reference (EcoR) collection. The strain was also tested for the ability to produce biofilm and shiga cytotoxins and had its whole genome sequenced by Ion Torrent Sequencing Technology. Results: The studied strain, which was detected both in ileum biopsies and the stools of the patient, displayed the aggregative adherence (AA) phenotype to Hep-2 cells and an ability to enter Caco-2 cells 3x as high as that of EIEC reference strain and 89% of that of the prototype AIEC LF82 strain. Although it could invade cultured macrophages, the strain was unable to replicate inside these cells. PCR screening revealed the presence of eae, aggR and stx1. Tests with bacterial culture supernatants in Vero cells demonstrating cytotoxicity suggested the production of Stx1. In addition, the strain revealed to be a strong biofilm producer, belonged to the B2 EcoR phylogroup, to the O126:H27 serogroup and to the multilocus sequencing type (MLST) ST3057. The 2 later features were deduced from the whole genome sequence of the strain. Conclusions: The characterization of this E. coli isolate from a CD patient revealed a combination of virulence markers of distinct DEC pathotypes, namely eae and stx1 of EHEC, AA, aggR and biofilm formation of EAEC, and invasiveness of EIEC. These features along with its serotype and phylogroup identity seem to suggest a potential to be involved in CD, an observation which should be tested with additional studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus is a common pathogen which can colonise and infect not only man, but also domestic animals. Especially, infection of cattle is of high economic relevance as S. aureus is an important causal agent of bovine mastitis. In the present contribution, a DNA microarray was applied for the study of 144 different gene targets, including resistance genes and genes encoding exotoxins, in S. aureus isolated from cows. One hundred and twenty-eight isolates from Germany and Switzerland were tested. These isolates were assigned to 20 different strains and nine clonal complexes. The majority of isolates belonged either to apparently closely related clonal complexes 8, 25, and 97 (together 34.4%) or were related to the sequenced bovine strain RF122 (48.4%). Notable characteristics of S. aureus of bovine origin are the carriage of intact haemolysin beta (in 82% of isolates tested), the absence of staphylokinase (in 89.1%), the presence of allelic variants of several exotoxins such as toxic shock syndrome toxin and enterotoxin N, and the occurrence of the leukocidin lukF-P83/lukM (in 53.1%). Two isolates were methicillin-resistant S. aureus (MRSA). One of them was a clonal complex 8 MRSA related to the epidemic MRSA strain Irish 01. The other one belonged to ST398/spa-type 34 resembling a newly emerging MRSA strain which has been described to occur in humans as well as in domestic animals. The presence of these two strains highlights the possibility of transfers of S. aureus strains between different host species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ADP-ribosylating toxin named Aeromonas salmonicida exoenzyme T (AexT) in A. salmonicida subsp. salmonicida, the etiological agent of furunculosis in fish, was characterized. Gene aexT, encoding toxin AexT, was cloned and characterized by sequence analysis. AexT shows significant sequence similarity to the ExoS and ExoT exotoxins of Pseudomonas aeruginosa and to the YopE cytotoxin of different Yersinia species. The aexT gene was detected in all of the 12 A. salmonicida subsp. salmonicida strains tested but was absent from all other Aeromonas species. Recombinant AexT produced in Escherichia coli possesses enzymatic ADP-ribosyltransferase activity. Monospecific polyclonal antibodies directed against purified recombinant AexT detected the toxin produced by A. salmonicida subsp. salmonicida and cross-reacted with ExoS and ExoT of P. aeruginosa. AexT toxin could be detected in a wild type (wt) strain of A. salmonicida subsp. salmonicida freshly isolated from a fish with furunculosis; however, its expression required contact with RTG-2 rainbow trout gonad cells. Under these conditions, the AexT protein was found to be intracellular or tightly cell associated. No AexT was found when A. salmonicida subsp. salmonicida was incubated in cell culture medium in the absence of RTG-2 cells. Upon infection with wt A. salmonicida subsp. salmonicida, the fish gonad RTG-2 cells rapidly underwent significant morphological changes. These changes were demonstrated to constitute cell rounding, which accompanied induction of production of AexT and which led to cell lysis after extended incubation. An aexT mutant which was constructed from the wt strain with an insertionally inactivated aexT gene by allelic exchange had no toxic effect on RTG-2 cells and was devoid of AexT production. Hence AexT is directly involved in the toxicity of A. salmonicida subsp. salmonicida for RTG-2 fish cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the paradigm that carbohydrates are T cell-independent antigens, isotype-switched glycan-specific immunoglobulin G (IgG) antibodies and polysaccharide-specific T cells are found in humans. We used a systems-level approach combined with glycan array technology to decipher the repertoire of carbohydrate-specific IgG antibodies in intravenous and subcutaneous immunoglobulin preparations. A strikingly universal architecture of this repertoire with modular organization among different donor populations revealed an association between immunogenicity or tolerance and particular structural features of glycans. Antibodies were identified with specificity not only for microbial antigens but also for a broad spectrum of host glycans that serve as attachment sites for viral and bacterial pathogens and/or exotoxins. Tumor-associated carbohydrate antigens were differentially detected by IgG antibodies, whereas non-IgG2 reactivity was predominantly absent. Our study highlights the power of systems biology approaches to analyze immune responses and reveals potential glycan antigen determinants that are relevant to vaccine design, diagnostic assays, and antibody-based therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. The factors behind the reemergence of severe, invasive group A streptococcal (GAS) diseases are unclear, but it could be caused by altered genetic endowment in these organisms. However, data from previous studies assessing the association between single genetic factors and invasive disease are often conflicting, suggesting that other, as-yet unidentified factors are necessary for the development of this class of disease. Methods. In this study, we used a targeted GAS virulence microarray containing 226 GAS genes to determine the virulence gene repertoires of 68 GAS isolates (42 associated with invasive disease and 28 associated with noninvasive disease) collected in a defined geographic location during a contiguous time period. We then employed 3 advanced machine learning methods (genetic algorithm neural network, support vector machines, and classification trees) to identify genes with an increased association with invasive disease. Results. Virulence gene profiles of individual GAS isolates varied extensively among these geographically and temporally related strains. Using genetic algorithm neural network analysis, we identified 3 genes with a marginal overrepresentation in invasive disease isolates. Significantly, 2 of these genes, ssa and mf4, encoded superantigens but were only present in a restricted set of GAS M-types. The third gene, spa, was found in variable distributions in all M-types in the study. Conclusions. Our comprehensive analysis of GAS virulence profiles provides strong evidence for the incongruent relationships among any of the 226 genes represented on the array and the overall propensity of GAS to cause invasive disease, underscoring the pathogenic complexity of these diseases, as well as the importance of multiple bacteria and/ or host factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motile Aeromonas are the most common bacteria of freshwater in the world that cause disease in fish and other cold-blooded and warm-blooded hosts. Among this group of bacteria, Aeromonas hydrophila is important in causing complications such as fin rot, skin ulcers and lethal hemorrhagic septicemia in fish. Several virulence factors involved in the pathogenesis of Aeromonas hydrophila, including extracellular enzymes (protease, lipase, elastase, gelatinase and nuclease) and toxins. From the exotoxins, hemolysin, aerolysin and cytolytic enterotoxin play an important role in pathogenesis. Detection of virulence markers by PCR as a key component of determining the pathogenesis of the bacteria and using indigenous vaccines for better immunization against this disease is important. In this study, a total of 200 fanned carps (126 common carp. 39 silver carp and 35 of grass carp) with symptoms suspected aeromonas septicemia were isolated from Khouzestan province farms. 125 bacteria belong to Aeromonas genus detected by biochemical and PCR methods. 31 of all isolates recognized as Aeromonas hydrophila with biochemical methods, I6srRNA detection and Lipase genes. Results showed that the role of Aeromonas sp. and Aeromonas hydrophila in fish with disease symptoms were 62.5% and 15.5% respectively. By using specific primers, three virulence genes including hemolysin, aerolysine and cytolytic enterotoxin were detected in these confirmed isolates, that 18 isolates (58/06%) hemolysin positive (hlyA +), 16 isolates (51/61%) aerolysine positive (aerA+) and 23 isolates (74/19%) for cytolytic enterotoxin gene (act+) were positive. The result of present study showed that most of the confirmed isolates genotype was hlyA+ act- with frequency equal to 51/61%. For investigating the protection effect of acut strain of bacteria, UV inactivated bacterin was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La piscirickettsiosis es una enfermedad contagiosa sistémica de los peces teleósteos cuyo agente causal es Piscirickettsia salmonis, una bacteria gram negativa intracelular facultativa. Esta enfermedad se ha descrito esporádicamente en distintas áreas geográficas y especies de peces en el mundo, pero es endémica y particularmente severa en salmónidos criados en agua de mar en Chile. En esta tesis se investigaron algunos aspectos de la patogénesis de esta enfermedad, estudiándose la infectividad de P. salmonis, tanto in vitro como in vivo, y buscándose además evidencias de la capacidad de secretar exotoxinas por parte de esta bacteria. Los ensayos de infectividad en células CHSE-214, procedentes de embrión de salmón chinook (Oncorhynchus tshawytscha), mostraron que existe una rápida adherencia de la bacteria a la superficie de la membrana plasmática (≤ 5 min posinoculación) seguida de su incorporación al citoplasma de estas células, proceso que ocurre entre las 3 y las 6 h posinoculación. Por su parte, el estudio de infectividad in vivo, que se realizó en trucha arcoiris (O. mykiss), reveló que este proceso comprende tres etapas principales: (i) una fase de rápida adhesión a células epiteliales principalmente de piel y branquias, pero también del canal alimentario; (ii) una invasión progresiva desde los sitios de entrada hacia tejidos más profundos hasta alcanzar el torrente sanguíneo y; (iii) una rápida diseminación vía hematógena para alcanzar virtualmente todos los tejidos corporales. Finalmente, se demostró que P. salmonis puede secretar exotoxinas termolábiles que tienen un efecto citotóxico selectivo según la célula blanco expuesta y que, probablemente, son parte de los factores de virulencia involucrados en la patogénesis de la piscirickettsiosis.