916 resultados para Ethrel stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The latex dilution reaction during the tapping flow course has been well documented and associated with the facilitation of tapping latex flow. However, its underlying mechanism has not experimentally examined. The latex total solid content, osmotic potential and phloem turgor pressure change during the tapping flow course were simultaneously measured to investigate the cause of water movement during the tapping flow course. It was found that there are three different stages for the laticifer water equilibrium during the tapping flow course. The tapping-induced rapid turgor pressure drop is the cause of the first stage water influx into laticifers, while osmoregulation prevails during water exchange in the second and third stages of tapping flow. Meanwhile, aquaporin expressions were, for the first time, investigated during the tapping flow course. The rapid transcript up-regulation of HbPIP1, HbPIP2;1 and HbPIP2;3 contributes to the latex dilution reaction. However, their activity gating cannot be ruled out. Ethrel stimulation can significantly dilute the corresponding latex fractions during the tapping flow course due to its up-regulations of HbPIP1, HbPIP2;1 and HbPIP2;3. Nevertheless, the latex dilution reaction pattern for the Ethrel treated trees did not change, except for a lower degree of dilution compared with the un-treated trees. All these results suggest that both phloem turgor pressure and aquaporins are involved in the latex dilution reaction during the tapping flow course.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To examine the effects of tea tree oil on rubber latex yield and the resulting latex physiological parameters of rubber tree (Hevea brasiliensis),clean water and 20%,40%,60%,80% and 100% of tea tree oil were applied on the tapping cut of rubber trees. The data were analyzed by Duncan test and its results showed that when compared to clean water (ck),80% and 100% of tea tree oil stimulation significantly promoted rubber latex yield(P<0.05). In addition,the latex physiological parameters changed with the sucrose content(P<0.01),magnesium ion content (P<0.01) and inorganic phosphorus content (P<0.01) of latex significantly increasing and thiol content significantly deceasing (P<0.01). The effect of tea tree oil treatments on rubber yield was similar to the impact of 0.5% ethrel stimulation. However,compared to ethrel stimulation,100% tea tree oil treatment significantly increased dry rubber and sucrose contents (P<0.01) and decreased thiol content (P<0.01). Thus,tea tree oil treatment involved different latex yield promotion mechanisms than that of ethrel stimulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phloem turgor pressure (PTP) is the initial driving force for latex flow after a rubber tree is tapped and therefore plays an important role in rubber tree latex production. Variation in PTP with rubber tree clone, age, yield potential and commonly used Ethrel (an ethylene releaser) stimulation have, however, not been comprehensively studied to date. The aim of this study was to investigate these relations and examine whether PTP can be used as an index for rubber tree clone assessment and tapping system optimization. The results showed that: (1) the daily change of PTP in the foliation season suggests that a high PTP can ensure a high latex yield and tapping could be moved forward to midnight or earlier in the night; (2) the decrease of PTP from the basal to distal stem indicates the benefit of a controlled upward tapping system; (3) the logarithmic increase in PTP with rubber tree planting age and age-based mean girth suggests that the preferred age for the commencement of rubber tree tapping is eight years; (4) the change of PTP with regenerated bark age suggests that the regenerated bark could be exploited again after the second year; (5) PTP is positively related to the yield potential of rubber tree clones; (6) although Ethrel stimulation could not significantly increase the initial PTP of a rubber tree, it delays the recovery of PTP after tapping. Therefore, PTP is an indicator of rubber tree latex yield and can be used for tapping system optimization. © 2014 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23–39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2–3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0Æ05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0Æ05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0Æ05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess the efficacy of bilateral pedunculopontine nucleus (PPN) deep brain stimulation (DBS) as a treatment for primary progressive freezing of gait (PPFG). ------ ----- Methods: A patient with PPFG underwent bilateral PPN-DBS and was followed clinically for over 14 months. ------ ----- Results: The PPFG patient exhibited a robust improvement in gait and posture following PPN-DBS. When PPN stimulation was deactivated, postural stability and gait skills declined to pre-DBS levels, and fluoro-2-deoxy-d-glucose positron emission tomography revealed hypoactive cerebellar and brainstem regions, which significantly normalised when PPN stimulation was reactivated. ------ ----- Conclusions: This case demonstrates that the advantages of PPN-DBS may not be limited to addressing freezing of gait (FOG) in idiopathic Parkinson's disease. The PPN may also be an effective DBS target to address other forms of central gait failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.