157 resultados para Ergometer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bicycle ergometer is a scientific device used by exercise physiologists which attempts to mimic on-road cycling characteristics such as foot technique, EMG activity, VO2, VCO2 and rider cardiology in a laboratory environment. Presently there are no known useful scientific ergometers that mimic these characteristics and are able to provide a satisfactory controlled resistance that is independent of speed. Previous research has suggested the use of a Magneto-Rheological (MR) Fluid as part of the ergometer design, as when used in a rotary brake application it is able to be controlled electronically to increase resistance instantly and independent of speed. In the target application, MR fluids are subject to immense tribological wear and temperature during viscous shearing, and will eventually show some degree of deterioration which is usually manifested as an increase in off-state viscosity. It is not known exactly how the fluid fails, however the amount of deterioration is related to the shear rate, temperature and duration and directly related to the power dissipation. Currently, there is very little literature that investigates the flow and thermal characteristics of MR fluid tribology using CFD. In this paper, we present initial work that aims to improve understanding of MR fluid wear via CFD modelling using Fluent, and results from the model are compared with those obtained from a experimental test rig of an MR fluid-based bicycle ergometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the reliability and feasibility of cycle ergometer tests in young children with cystic fibrosis (CF). Children with CF aged 6-11 years and with stable lung disease performed two cycle ergometry tests (intermittent sprint and continuous incremental) on two occasions 1 week apart. Reliability was assessed using repeated-measures ANOVA. Bias was considered to be significant at P?

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of pacing on performance, oxygen uptake (V̇O2), oxygen deficit and blood lactate accumulation during a 6-minute cycle ergometer test. Six recreational cyclists completed three 6-minute cycling tests using fast-start, even-pacing and slow-fast pacing conditions. Cycle ergometer performance was measured as the mean power output produced for each cycling test. Energy system contribution during each cycling trial was estimated using a modified accumulated oxygen deficit (AOD) method. Blood lactate concentration was analysed from blood sampled using a catheter in a forearm vein prior to exercise, at 2 minutes, 4 minutes and 6 minutes during exercise, and at 2 minutes, 5 minutes and 10 minutes post-exercise. There was no significant difference between the pacing conditions for mean power output (P=0.09), peak V̇O2 (P=0.92), total V̇O2 (P=0.76), AOD (P=0.91), the time-course of V̇O2 (P=0.22) or blood lactate accumulation (P=0.07). There was, however, a significant difference between the three pacing conditions in the oxygen deficit measured over time (P=0.02). These changes in the time-course of oxygen deficit during cycling trials did not, however, significantly affect the mean power output produced by each pacing condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare a novel sprint test on a cycle ergometer with a countermovement-jump (CMJ) test for monitoring neuromuscular fatigue after Australian rules football match play. METHODS: Twelve elite under-18 Australian rules football players (mean ± SD age 17.5 ± 0.6 y, stature 184.7 ± 8.8 cm, body mass 75.3 ± 7.8 kg) from an Australian Football League club's Academy program performed a short sprint test on a cycle ergometer along with a single CMJ test 1 h prematch and 1, 24, and 48 h postmatch. The cycle-ergometer sprint test involved a standardized warm-up, a maximal 6-s sprint, a 1-min active recovery, and a 2nd maximal 6-s sprint, with the highest power output of the 2 sprints recorded as peak power (PP). RESULTS: There were small to moderate differences between postmatch changes in cycle-ergometer PP and CMJ PP at 1 (ES = 0.49), 24 (ES = -0.85), and 48 h postmatch (ES = 0.44). There was a substantial reduction in cycle-ergometer PP at 24 h postmatch (ES = -0.40) compared with 1 h prematch. CONCLUSIONS: The cycle-ergometer sprint test described in this study offers a novel method of neuromuscular-fatigue monitoring in team-sport athletes and specifically quantifies the concentric component of the fatigue-induced decrement of force production in muscle, which may be overlooked by a CMJ test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Pulmonary rehabilitation (PR) programs are beneficial to patients with chronic obstructive pulmonary disease (COPD), and lower-extremity training is considered a fundamental component of PR. Nevertheless, the isolated effects of each PR component are not well established. Objective: We aimed to evaluate the effects of a cycle ergometry exercise protocol as the only intervention in a group of COPD patients, and to compare these results with a control group. Methods: 25 moderate-to-severe COPD patients were evaluated regarding pulmonary function, respiratory muscle strength, exercise capacity, quality of life and body composition. Patients were allocated to one of two groups: (a) the trained group (TG; n=13; 6 men) was submitted to a protocol of 24 exercise sessions on a cycle ergometer, with training intensity initially set at a heart rate (HR) close to 80% of maximal HR achieved in a maximal test, and load increase based on dyspnea scores, and (b) the control group (CG; n=12; 6 men) with no intervention during the protocol period. Results: TG showed within-group significant improvements in endurance cycling time, 6-min walking distance test, maximal inspiratory pressure and in the domain 'dyspnea' related to quality of life. Despite the within-group changes, no between-group significant differences were observed. Conclusion: In COPD patients, the results of isolated low-to-moderate intensity cycle ergometer training are not comparable to effects of multimodality and high-intensity training programs. Copyright (C) 2004 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to verify the correlation between the Wingate arm crank test outputs (peak power, mean power, and fatigue index), obtained on a specific ergometer, and the performance in crawl stroke swim sprints of 14, 25, 50, and 400 m. The experiment was conducted with 9 healthy male volunteers (18.1 +/- 2.2 years of age; 172 +/- 0.04 cm; 67.7 +/- 5.92 kg and 15.7 +/- 4.57% body fat). on determined days, all individuals were submitted to the Wingate arm crank test and crawl freestyle sprints of 14, 25, 50, and 400 m as they were timed with a stopwatch. The peak power, the mean power, and the fatigue index, which were obtained during the Wingate arm crank test, were not significantly correlated with the maximum swim velocities during the crawl free-style tests of 14 (r = 0.40; r = 0.64; r = 0.11), 25 (r = 0.28; r = 0.39; r = -0.27), 50 (r = 0.03; r = 0.09; r = -0.31), and 400 (r = -0.52; r = -0.37; r = -0.65) m respectively. Thus, it is possible to conclude that the Wingate arm crank test is not suitable to assess the anaerobic power of swimmers under the described experimental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. The aim of the present study was to investigate the validity of the Lactate Minimum Test (LMT) for the determination of peak VO2 on a cycle ergometer and to determine the submaximal oxygen uptake (VO2) and pulmonary ventilation (VE) responses in an incremental exercise test when it is preceded by high intensity exercise (i.e., during a LMT).Methods. Ten trained male athletes (triathletes and cyclists) performed 2 exercise tests in random order on an electromagnetic cycle ergometer: 1) Control Test (CT): an incremental test with an initial work rate of 100 W, and with 25 W increments at 3-min intervals, until voluntary exhaustion; 2) LMT: an incremental test identical to the CT, except that it was preceded by 2 supramaximal bouts of 30-sec (similar to120% VO(2)peak) with a 30-sec rest to induce lactic acidosis. This test started 8 min after the induction of acidosis.Results. There was no significant difference in peak VO2 (65.6+/-7.4 ml.kg(-1).min(-1); 63.8+/-7.5 ml.kg(-1).min(-1) to CT and LMT, respectively). However, the maximal power output (POmax) reached was significantly higher in CT (300.6+/-15.7 W) than in the LMT (283.2+/-16.0 W).VO2 and VE were significantly increased at initial power outputs in LMT.Conclusion. Although the LMT alters the submaximal physiological responses during the incremental phase (greater initial metabolic cost), this protocol is valid to evaluate peak VO2, although the POmax reached is also reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to verify the correlation between the Wingate arm crank test outputs (peak power, mean power, and fatigue index), obtained on a specific ergometer, and the performance in crawl stroke swim sprints of 14, 25, 50, and 400 m. The experiment was conducted with 9 healthy male volunteers (18.1 ± 2.2 years of age; 172 ± 0.04 cm; 67.7 ± 5.92 kg and 15.7 ± 4.57% body fat). On determined days, all individuals were submitted to the Wingate arm crank test and crawl freestyle sprints of 14, 25, 50, and 400 m as they were timed with a stopwatch. The peak power, the mean power, and the fatigue index, which were obtained during the Wingate arm crank test, were not significantly correlated with the maximum swim velocities during the crawl freestyle tests of 14 (r = 0.40; r = 0.64; r = 0.11), 25 (r = 0.28; r = 0.39; r = -0.17), 50 (r = 0.03; r = 0.09; r = -0.31), and 400 (r = -0.52; r = -0.37; r = -0.65) m, respectively. Thus, it is possible to conclude that the Wingate arm crank test is not suitable to assess the anaerobic power of swimmers under the described experimental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] To determine central and peripheral hemodynamic responses to upright leg cycling exercise, nine physically active men underwent measurements of arterial blood pressure and gases, as well as femoral and subclavian vein blood flows and gases during incremental exercise to exhaustion (Wmax). Cardiac output (CO) and leg blood flow (BF) increased in parallel with exercise intensity. In contrast, arm BF remained at 0.8 l/min during submaximal exercise, increasing to 1.2 +/- 0.2 l/min at maximal exercise (P < 0.05) when arm O(2) extraction reached 73 +/- 3%. The leg received a greater percentage of the CO with exercise intensity, reaching a value close to 70% at 64% of Wmax, which was maintained until exhaustion. The percentage of CO perfusing the trunk decreased with exercise intensity to 21% at Wmax, i.e., to approximately 5.5 l/min. For a given local Vo(2), leg vascular conductance (VC) was five- to sixfold higher than arm VC, despite marked hemoglobin deoxygenation in the subclavian vein. At peak exercise, arm VC was not significantly different than at rest. Leg Vo(2) represented approximately 84% of the whole body Vo(2) at intensities ranging from 38 to 100% of Wmax. Arm Vo(2) contributed between 7 and 10% to the whole body Vo(2). From 20 to 100% of Wmax, the trunk Vo(2) (including the gluteus muscles) represented between 14 and 15% of the whole body Vo(2). In summary, vasoconstrictor signals efficiently oppose the vasodilatory metabolites in the arms, suggesting that during whole body exercise in the upright position blood flow is differentially regulated in the upper and lower extremities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e., shortening contractions) mainly leads to adaptations of muscle oxidative metabolism and endurance while eccentric exercise (i.e., lengthening contractions) results in muscle growth and gain of muscle strength. Modified gene expression is believed to mediate these exercise-specific muscle adjustments. In the present study, early alterations of the gene expression signature were monitored by a muscle-specific microarray. Transcript profiling was performed on muscle biopsies of vastus lateralis obtained from six male subjects before and in a 24-h time course after a single bout of mild eccentric ergometer exercise. The eccentric exercise consisted of 15 min of eccentric cycling at 50% of the individual maximal concentric power output leading to muscle soreness (5.9 on a 0-10 visual analogue scale) and limited muscle damage (1.7-fold elevated creatine kinase activity). Muscle impairment was highlighted by a transient reduction in jumping height after the eccentric exercise. On the gene expression level, we observed a general early downregulation of detected transcripts, followed by a slow recovery close to the control values within the first 24 h post exercise. Only very few regulatory factors were increased. This expression signature is different from the signature of a previously published metabolic response after an intensive endurance-type concentric exercise as well as after maximal eccentric exercise. This is the first description of the time course of changes in gene expression as a consequence of a mild eccentric stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The impact of acute weight loss on rowing performance was assessed when generous nutrient intake was provided in 2 h of recovery after making weight. Methods: Competitive rowers (N = 17) completed four ergometer trials, each separated by 48 h. Two trials were performed after a 4% body mass loss in the previous 24 h (WT) and two were performed after no weight restrictions, that is, unrestricted (UNR). In addition, two trials (I X WT, I X UNR) were in a thermoneutral environment (NEUTRAL, mean 21.1 +/- SD 0.7 degrees C, 29.0 +/- 4.5% RH) and two were in the heat (HOT 32.4, +/- 0.4 degrees C, 60.4 +/- 2.7% RH). Trials were performed in a counterbalanced fashion according to a Latin square design. Aggressive nutritional recovery strategies (WT 2.3 g(.)kg(-11) carbohydrate, 34 mg-kg(-1) Na, 28.4 mL(.)kg(-1) fluid; UNR ad libitum) were employed in the 2 h after weigh-in. Results: Both WT (mean 2.1, 95% CI 0.7-3.4 s; P = 0.003) and HOT (4.1, 2.7 - 5.4 s; P < 0.001) compromised 2000-m time-trial performance. Whereas WT resulted in hypohydration, the associated reduction in plasma volume explained only part of the performance compromise observed (0.2 s for every 1% decrement) Moreover, WT did not influence core temperature or indices of cardiovascular function. Conclusions: Acute weight loss compromised performance, despite generous nutrient intake in recovery, although the effect was small. Performance decrements were further exacerbated when exercise was performed in the heat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To examine the influence of two different fast-start pacing strategies on performance and oxygen consumption (V˙O2) during cycle ergometer time trials lasting ∼5 min. Methods: Eight trained male cyclists performed four cycle ergometer time trials whereby the total work completed (113 ± 11.5 kJ; mean ± SD) was identical to the better of two 5-min self-paced familiarization trials. During the performance trials, initial power output was manipulated to induce either an all-out or a fast start. Power output during the first 60 s of the fast-start trial was maintained at 471.0 ± 48.0 W, whereas the all-out start approximated a maximal starting effort for the first 15 s (mean power: 753.6 ± 76.5 W) followed by 45 s at a constant power output (376.8 ± 38.5 W). Irrespective of starting strategy, power output was controlled so that participants would complete the first quarter of the trial (28.3 ± 2.9 kJ) in 60 s. Participants performed two trials using each condition, with their fastest time trial compared. Results: Performance time was significantly faster when cyclists adopted the all-out start (4 min 48 s ± 8 s) compared with the fast start (4 min 51 s ± 8 s; P < 0.05). The first-quarter V˙O2 during the all-out start trial (3.4 ± 0.4 L·min-1) was significantly higher than during the fast-start trial (3.1 ± 0.4 L·min-1; P < 0.05). After removal of an outlier, the percentage increase in first-quarter V˙O2 was significantly correlated (r = -0.86, P < 0.05) with the relative difference in finishing time. Conclusions: An all-out start produces superior middle distance cycling performance when compared with a fast start. The improvement in performance may be due to a faster V˙O2 response rather than time saved due to a rapid acceleration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.