958 resultados para Er:YAG laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study evaluated the in vitro influence of pulse-repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface. Dentin surfaces of buccal or lingual surfaces from human third molars were submitted to tensile test in different depths (superficial, 1.0 and 1.5 mm) of the same dental area, using the same sample. Surface treatments were acid conditioning solely (control) and Er:YAG laser irradiation (80 mJ) followed by acid conditioning, with different pulse-repetition rates (1, 2, 3, or 4 Hz). Single bond/Z-250 system was used. The samples were stored in distilled water at 37 degrees C for 24 h, and then the first test (superficial dentine) was performed. The bond failures were analyzed. Following, the specimens were identified, grounded until 1.0- and 1.5-mm depths, submitted again to the treatments and to the second and, after that, to third-bond tests on a similar procedure and failure analysis. ANOVA and Tukey test demonstrated a significant difference (p < 0.001) for treatment and treatment X depth interaction (p < 0.05). The tested depths did not show influence (p > 0.05) on the bond strength of dentin-resin interface. It may be concluded that Er:YAG laser with 1, 2, 3, or 4 Hz combined with acid conditioning did not increase the resin tensile bond strength to dentin, regardless of dentin depth. (C) 2007 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Aim To evaluate in vitro the effect of calcium hydroxide [Ca(OH)(2)] and Er:YAG laser on bacterial endotoxin [also known as lipopolysaccharide (LPS)] as determined by nitric oxide (NO) detection in J774 murine macrophage cell line culture. Methodology Samples of LPS solution (50 mu gmL-1), Ca(OH)(2) suspension (25 mg mL-1) and LPS suspension with Ca(OH)(2) were prepared. The studied groups were: I - LPS (control); II - LPS + Ca(OH)(2); III - LPS + Er:YAG laser (15 Hz 140 mJ); IV - LPS + Er:YAG laser (15 Hz 200 mJ); V - LPS + Er:YAG laser (15 Hz 250 mJ), VI - Pyrogen-free water; VII - Ca(OH)(2). Murine macrophage J774 cells were plated and 10 mu L of the samples were added to each well. The supernatants were collected for NO detection by the Griess reaction. Data were analysed statistically by one-way anova and Tukey`s test at 5% significance level. Results The mean and SE (in mu mol L-1) values of NO release were: I - 10.48 +/- 0.58, II - 6.41 +/- 0.90, III - 10.2 +/- 0.60, IV - 8.35 +/- 0.40, V - 10.40 +/- 0.53, VI - 3.75 +/- 0.70, VII - 6.44 +/- 0.60; and the values for the same experiment repeated after 1 week were: I - 21.20 +/- 1.50, II - 9.10 +/- 0.60, III - 19.50 +/- 1.00, IV - 18.50 +/- 0.60, V - 21.30 +/- 0.90, VI - 2.00 +/- 0.20, VII - 6.80 +/- 1.70. There was no significant difference (P > 0.05) between the control and the laser-treated groups (III, IV and V), or comparing groups II, VI and VII to each other (P > 0.05). Group I had significantly higher NO release than group II (P < 0.05). Groups II and VI had similar NO release (P > 0.05). Conclusions Calcium hydroxide inactivated the bacterial endotoxin (LPS) whereas none of the Er:YAG laser parameter settings had the same effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. Purpose: To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Methods: Sixty human third molars were employed to obtain discs (congruent to 1 mm thick) that were randomly assigned to six groups (n = 10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm. and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Results: Laser irradiation at 11 and 12 min provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Conclusions: Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the influence of energy and pulse repetition rate of Er:YAG laser on the enamel ablation ability and substrate morphology. Methods: Fifteen crowns of molars were sectioned in four fragments, providing 60 samples, which were ground to flatten the enamel surface. The initial mass was obtained by weighing the fragments. The specimens were hydrated for I h, fixed, and a 3-mm-diameter area was delimited. Twelve groups were randomly formed according to the combination of laser energies (200, 250, 300, or 350 mJ) and pulse repetition rates (2, 3, or 4 Hz). The final mass was obtained and mass loss was calculated by the difference between the initial and final mass. The specimens were prepared for SEM. Data were submitted to ANOVA and Scheffe test. Results: The 4 Hz frequency resulted in higher mass loss and was statistically different from 2 and 3 Hz (p < 0.05). The increase of frequency produced more melted areas, cracks, and unselective and deeper ablation. The 350 mJ energy promoted greater mass loss, similar to 300 mJ. Conclusions: The pulse repetition rate influenced more intensively the mass loss and morphological alteration. Among the tested parameters, 350 mJ/3 Hz improved the ability of enamel ablation with less surface morphological alterations. (C) 2007 Wiley Periodicals, Inc. J Biomed Mater Res.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess in vitro the influence of Er:YAG laser irradiation distance on the shear strength of the bond between an adhesive restorative system and primary dentin. A total of 60 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface and were randomly assigned to six groups (n = 10). The control group was etched with 37% phosphoric acid. The remaining five groups were irradiated (80 mJ, 2 Hz) at different irradiation distances (11, 12, 16, 17 and 20 mm), followed by acid etching. An adhesive agent (Single Bond) was applied to the bonding sites, and resin cylinders (Filtek Z250) were prepared. The shear bond strength tests were performed in a universal testing machine (0.5 mm/min). Data were submitted to statistical analysis using one-way ANOVA and the Kruskal-Wallis test (p < 0.05). The mean shear bond strengths were: 7.32 +/- 3.83, 5.07 +/- 2.62, 6.49 +/- 1.64, 7.71 +/- 0.66, 7.33 +/- 0.02, and 9.65 +/- 2.41 MPa in the control group and the groups irradiated at 11, 12, 16, 17, and 20 mm, respectively. The differences between the bond strengths in groups II and IV and between the bond strengths in groups II and VI were statistically significant (p < 0.05). Increasing the laser irradiation distance resulted in increasing shear strength of the bond to primary dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study evaluated the microtensile bond strength of a resin composite to Er:YAG-prepared dentin after long-term storage and thermocycling. Eighty bovine incisors were selected and their roots removed. The crowns were ground to expose superficial dentin. The samples were randomly divided according to cavity preparation method (I-Er:YAG laser and II-carbide bur). Subsequently, an etch & rinse adhesive system was applied and the samples were restored with a resin composite. The samples were subdivided according to time of water storage (WS)/number of thermocycles (TC) performed: A) 24 hours WS/no TC; B) 7 days WS/500 TC; C) 1 month WS/2,000 TC; D) 6 months WS/12,000 TC. The teeth were sectioned in sticks with a cross-sectional area of 1.0-mm(2), which were loaded in tension in a universal testing machine. The data were subjected to two-way ANOVA, Scheffe and Fisher`s tests at a 5% level. In general, the bur-prepared group displayed higher microtensile bond strength values than the laser-treated group. Based on one-month water storage and 2,000 thermocycles, the performance of the tested adhesive system to Er:YAG-laser irradiated dentin was negatively affected (Group IC), while adhesion of the bur-prepared group decreased only within six months of water storage combined with 12,000 thermocycles (Group IID). It may be concluded that adhesion to the Er:YAG laser cavity preparation was more affected by the methods used for simulating degradation of the adhesive interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM), of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 mu m) or Er:YAG (2.94 mu m) laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group) - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, alpha = 5%). The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 x G2: p = 0.002; G3 x G2: p = 0.017). The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recently, the erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser has been used for periodontal therapy. This study compared Er:YAG laser irradiation (100 mJ/pulse, 10 Hz, 12.9 J/cm(2)) with or without conventional scaling and root planing (SRP) to SRP only for the treatment of periodontal pockets affected with chronic periodontitis.Methods: Twenty-one subjects with pockets from 5 to 9 mm in non-adjacent sites were studied. In a split-mouth design, each site was randomly allocated to a treatment group: SRP and laser (SRPL), laser only (L), SRP only (SRP), or no treatment (C). The plaque index (PI), gingival index (GI), bleeding on probing (BOP), and interleukin (IL)-1 beta levels in crevicular fluid were evaluated at baseline and at 12 and 30 days postoperatively, whereas probing depth (PD), gingival recession (GR), and clinical attachment level (CAL) were evaluated at baseline and 30 days after treatment. A statistical analysis was conducted (P<0.05).Results: Twelve days postoperatively, the PI decreased for SRPL and SRP groups (P<0.05); the GI increased for L, SRP, and C groups but decreased for the SRPL group (P<0.05); and BOP decreased for SRPL, L, and SRP groups (P<0.01). Thirty days postoperatively, BOP decreased for treated groups and was lower than the C group (P<0.05). PD decreased in treated groups (P<0.001), and differences were found between SRPL and C groups (P<0.05). CAL gain was significant only for the SRP group (P<0.01). GR increased for SRPL and L groups (P<0.05). No difference in IL-1 beta was detected among groups and periods.Conclusion: Er:YAG laser irradiation may be used as an adjunctive aid for the treatment of periodontal pockets, although a significant CAL gain was observed with SRP alone and not with laser treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objective: evaluate the adhesion of adhesive restorations with and without a base of resin-modified glass-ionomer cement (RMGIC) to dentin irradiated with Er:YAG laser.Study Design/Materials and Methods: Twenty-four human molar teeth were divided into 6 groups (n=4): G1) 37% Phosphoric acid (PA) + Adhesive system (Ad) + Composite resin (CR); G2) RMGIC + CR; G3) Laser (60mJ-5Hz-20s) + PA + Ad + CR; G4) Laser (60 mJ-5 Hz-20 s) + RMGIC + CR; G5) Laser (100mJ-5Hz-20s) + PA + Ad + CR; G6) Laser (100mJ-5Hz-20s) + RMGIC + CR. Teeth were prepared, restored and cut into specimens, according to the treatment proposed and to methodology for microtensile test. Data were submitted to ANOVA and Tukey statistical tests (alpha=5%).Results:. The mean values for adhesion (MPa) and standard deviation (+/- SD) were: G1) 26.30(+/- 4.50), G2) 5.34(+/- 2.87), G3) 21.16(+/- 6.01), G4) 5.22(+/- 1.52), G5) 22.23(+/- 4.98), G6) 5.25(+/- 3.08).Conclusion: the use of Er:YAG laser did not influence on the restorations adhesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Our goal in this study was to evaluate the antimicrobial effect of Er:YAG laser applied after biomechanical preparation of the root canals of dog's teeth with apical periodontitis. Background Data: Various in vitro studies have reported effective bacterial reduction in infected root canals using Er:YAG laser. However, there is no in vivo research to support these results. Methods: Forty root canals of dogs' premolar teeth with pulp necrosis and chronic periapical lesions were used. An initial microbiological sample was taken, and after biomechanical preparation was carried out, a second microbiological sample was taken. The teeth were divided into two groups: Group I-biomechanical preparation was taken of root canals without Er:YAG laser application; Group II-biomechanical preparation was taken of root canals with Er:YAG laser application using 140-mj input, 63-mJ output/15 Hz. After coronal sealing, the root canals were left empty for 7 days at which time a third microbiological sample was taken. The collected material was removed from the root canal with a #40 K file and placed in transport media. It was serially diluted and seeded on culture dishes selective for anaerobes, aerobes, and total streptococci. Colony-forming units per milliliter (CFU/mL) were counted. Results: Groups I and II showed an increase of CFU/mL for all microorganisms 7 days after treatment, being statistically significant for anaerobes in Group I and for anaerobes and total streptococci in Group II. When comparing CFU/mL of Groups I and II, there was a statistically significant increase after 7 d for total streptococci in Group II. Conclusion: Er:YAG laser applied after biomechanical preparation did not reduce microorganisms in the root canal system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective this study was to evaluate in vitro the bond strength of two etch-and-rise and one self-etching adhesive system after dentin irradiation with Er:YAG (erbium: yttrium aluminum garnet) laser using microtensile test. The results revealed that the groups treated with laser Er:YAG presented less tensile bond strength, independently to the adhesive system used. The prompt L-pop adhesive presented less microtensile bond strength compared to the other adhesives evaluated. There was no difference between single bond and excite groups. The adhesive failures were predominant in all the experimental groups. The Er:YAG laser influenced negatively bond strength values of adhesive systems tested in dental substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.