220 resultados para Encephalomyelitis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.

microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.

To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.

A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.

Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Chronic fatigue syndrome, also known as myalgic encephalomyelitis (CFS/ME), is characterized by chronic disabling fatigue and other symptoms, which are not explained by an alternative diagnosis. Previous trials have suggested that graded exercise therapy (GET) is an effective and safe treatment. GET itself is therapist-intensive with limited availability. Objective: While guided self-help based on cognitive behavior therapy appears helpful to patients, Guided graded Exercise Self-help (GES) is yet to be tested. Methods: This pragmatic randomized controlled trial is set within 2 specialist CFS/ME services in the South of England. Adults attending secondary care clinics with National Institute for Health and Clinical Excellence (NICE)-defined CFS/ME (N=218) will be randomly allocated to specialist medical care (SMC) or SMC plus GES while on a waiting list for therapist-delivered rehabilitation. GES will consist of a structured booklet describing a 6-step graded exercise program, supported by up to 4 face-to-face/telephone/Skype™ consultations with a GES-trained physiotherapist (no more than 90 minutes in total) over 8 weeks. The primary outcomes at 12-weeks after randomization will be physical function (SF-36 physical functioning subscale) and fatigue (Chalder Fatigue Questionnaire). Secondary outcomes will include healthcare costs, adverse outcomes, and self-rated global impression change scores. We will follow up all participants until 1 year after randomization. We will also undertake qualitative interviews of a sample of participants who received GES, looking at perceptions and experiences of those who improved and worsened. Results: The project was funded in 2011 and enrolment was completed in December 2014, with follow-up completed in March 2016. Data analysis is currently underway and the first results are expected to be submitted soon. Conclusions: This study will indicate whether adding GES to SMC will benefit patients who often spend many months waiting for rehabilitative therapy with little or no improvement being made during that time. The study will indicate whether this type of guided self-management is cost-effective and safe. If this trial shows GES to be acceptable, safe, and comparatively effective, the GES booklet could be made available on the Internet as a practitioner and therapist resource for clinics to recommend, with the caveat that patients also be supported with guidance from a trained physiotherapist. The pragmatic approach in this trial means that GES findings will be generalizable to usual National Health Service (NHS) practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’inflammation du système nerveux central (SNC), appelée neuroinflammation, est un aspect inséparable des maladies neurodégénératives chroniques comme la sclérose en plaques (SEP) et la maladie d’Alzheimer (MA). La caractérisation de la signature moléculaire spécifique à chaque population cellulaire dans des pathologies distinctes va aboutir à la compréhension et donc au contrôle de la neuroinflammation. Le présent ouvrage a pour but de mieux comprendre les mécanismes d’action de deux types cellulaires myéloïdes, la microglie et les neutrophiles, au cours des affections neuroinflammatoires du SNC. Ainsi, le premier objectif a été de comprendre le rôle des cytokines IL-36 dans la neuroinflammation établie au cours de l’encéphalomyélite auto-immune expérimentale (EAE). Dans une seconde partie, l’objectif a été d’explorer l’action du GPR84, un récepteur couplé à la protéine G spécifique à la microglie dans le SNC, lors de l’altération des fonctions cérébrales dans un modèle de souris transgénique de la MA. Nos résultats démontrent que la voie de signalisation IL-36/IL36R est augmentée dans trois modèles différents de l’EAE, mais ne contribue pas au développement ni à la progression de la pathologie. En utilisant l’approche de cytométrie en flux nous identifions les neutrophiles comme la source majeure de l’IL-36γ. De plus, nous démontrons que la microglie exprime l’IL-36R et sa stimulation par l’IL-36γ conduit à la production de cytokines pro-inflammatoires. Dans un second temps, nous caractérisons l’augmentation de l’expression du GPR84 par la microglie dans le modèle murin de la MA APP/PS1. Ainsi, le croisement de ces souris avec des souris déficientes en GPR84 diminue l’activation et le recrutement de la microglie autour des plaques d’amyloïde-β et accélère le déclin cognitif. Nos études impliquent le GPR84 comme un acteur important dans le maintien de l’homéostasie neuronale puisque son absence favorise la dégénérescence des dendrites dans le cerveau. Les résultats obtenus dans cette thèse apportent de nouveaux éléments qui peuvent contribuer au développement des thérapies qui ciblent les cellules myéloïdes dans diverses pathologies du SNC. Ces données ouvrent de nouvelles pistes pour élucider le rôle de l’IL-36γ dans des maladies neurodégénératives. Enfin, pour une première fois, nous présentons un modèle murin permettant d’identifier le(s) ligand(s) endogène(s) du GPR84, une cible thérapeutique potentielle pour la prévention et/ou le traitement de la MA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the application of multispectral imaging to several novel oximetry applications. Chapter 1 motivates optical microvascular oximetry, outlines oxygen transport in the body, describes the theory of oximetry, and describes the challenges associated with in vivo oximetry, in particular imaging through tissue. Chapter 2 reviews various imaging techniques for quantitative in vivo oximetry of the microvasculature, including multispectral and hyperspectral imaging, photoacoustic imaging, optical coherence tomography, and laser speckle techniques. Chapter 3 describes a two-wavelength oximetry study of two microvascular beds in the anterior segment of the eye: the bulbar conjunctival and episcleral microvasculature. This study reveals previously unseen oxygen diffusion from ambient air into the bulbar conjunctival microvasculature, altering the oxygen saturation of the bulbar conjunctiva. The response of the bulbar conjunctival and episcleral microvascular beds to acute mild hypoxia is quantified and the rate at which oxygen diffuses into bulbar conjunctival vessels is measured. Chapter 4 describes the development and application of a highly novel non-invasive retinal angiography technique: Oximetric Ratio Contrast Angiography (ORCA). ORCA requires only multispectral imaging and a small perturbation of blood oxygen saturation to produce angiographic sequences. A pilot study of ORCA in human subjects was conducted. This study demonstrates that ORCA can produce angiographic sequences with features such as sequential vessel filling and laminar flow. The application and challenges of ORCA are discussed, with emphasis on comparison with other angiography techniques, such as fluorescein angiography. Chapter 5 describes the development of a multispectral microscope for oximetry in the spinal cord dorsal vein of rats. Measurements of blood oxygen saturation are made in the dorsal vein of both healthy rats, and in rats with the Experimental autoimmune encephalomyelitis (EAE) disease model of multiple sclerosis. The venous blood oxygen saturation of EAE disease model rats was found to be significantly lower than that of healthy controls, indicating increased oxygen uptake from blood in the EAE disease model of multiple sclerosis. Chapter 6 describes the development of video-rate red eye oximetry; a technique which could enable stand-off oximetry of the blood-supply of the eye with high temporal resolution. The various challenges associated with video-rate red eye oximetry are investigated and their influence quantified. The eventual aim of this research is to track circulating deoxygenation perturbations as they arrive in both eyes, which could provide a screening method for carotid artery stenosis, which is major risk-factor for stroke. However, due to time constraints, it was not possible to thoroughly investigate if video-rate red eye can detect such perturbations. Directions and recommendations for future research are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic demyelinating neurological disorder affecting people worldwide; women are affected more than men. MS results in serious neurological deficits along with behavioral compromise, the mechanisms of which still remain unclear. Behavioral disturbances such as depression, anxiety, cognitive impairment, psychosis, euphoria, sleep disturbances, and fatigue affect the quality of life in MS patients. Among these, depression and psychosis are more common than any other neurological disorders. In addition, depression is associated with other comorbidities. Although anxiety is often misdiagnosed in MS patients, it can induce suicidal ideation if it coexists with depression. An interrelation between sleep abnormalities and fatigue is also reported among MS patients. In addition, therapeutics for MS is always a challenge because of the presence of the blood-brain barrier, adding to the lack of detailed understanding of the disease pathology. In this review, we tried to summarize various behavioral pathologies and their association with MS, followed by its conventional treatment and nanotheranostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide plays an indispensable role in modulating cellular signaling and redox pathways. This role is mainly effected by the readily reversible nitrosylation of selective protein cysteine thiols. The reversibility and sophistication of this signaling system is enabled and regulated by a number of enzymes which form part of the thioredoxin, glutathione, and pyridoxine antioxidant systems. Increases in nitric oxide levels initially lead to a defensive increase in the number of nitrosylated proteins in an effort to preserve their function. However, in an environment of chronic oxidative and nitrosative stress (O&NS), nitrosylation of crucial cysteine groups within key enzymes of the thioredoxin, glutathione, and pyridoxine systems leads to their inactivation thereby disabling denitrosylation and transnitrosylation and subsequently a state described as "hypernitrosylation." This state leads to the development of pathology in multiple domains such as the inhibition of enzymes of the electron transport chain, decreased mitochondrial function, and altered conformation of proteins and amino acids leading to loss of immune tolerance and development of autoimmunity. Hypernitrosylation also leads to altered function or inactivation of proteins involved in the regulation of apoptosis, autophagy, proteomic degradation, transcription factor activity, immune-inflammatory pathways, energy production, and neural function and survival. Hypernitrosylation, as a consequence of chronically elevated O&NS and activated immune-inflammatory pathways, can explain many characteristic abnormalities observed in neuroprogressive disease including major depression and chronic fatigue syndrome/myalgic encephalomyelitis. In those disorders, increased bacterial translocation may drive hypernitrosylation and autoimmune responses against nitrosylated proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exact pathophysiology of major depressive disorder (MDD) remains elusive. The monoamine theory, which hypothesizes that MDD emerges as a result of dysfunctional serotonergic, dopaminergic and noradrenergic pathways, has guided the therapy of this illness for several decades. More recently, the involvement of activated immune, oxidative and nitrosative stress pathways and of decreased levels of neurotrophic factors has provided emerging insights regarding the pathophysiology of MDD, leading to integrated theories emphasizing the complex interplay of these mechanisms that could lead to neuroprogression. In this review, we propose an integrative model suggesting that T helper 17 (Th17) cells play a pivotal role in the pathophysiology of MDD through (i) microglial activation, (ii) interactions with oxidative and nitrosative stress, (iii) increases of autoantibody production and the propensity for autoimmunity, (iv) disruption of the blood-brain barrier, and (v) dysregulation of the gut mucosa and microbiota. The clinical and research implications of this model are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Live animal trade is considered a major mode of introduction of viruses from enzootic foci into disease-free areas. Due to societal and behavioural changes, some wild animal species may nowadays be considered as pet species. The species diversity of animals involved in international trade is thus increasing. This could benefit pathogens that have a broad host range such as arboviruses. The objective of this study was to analyze the risk posed by live animal imports for the introduction, in the European Union (EU), of four arboviruses that affect human and horses: Eastern and Western equine encephalomyelitis, Venezuelan equine encephalitis and Japanese encephalitis. Importation data for a five-years period (2005-2009, extracted from the EU TRACES database), environmental data (used as a proxy for the presence of vectors) and horses and human population density data (impacting the occurrence of clinical cases) were combined to derive spatially explicit risk indicators for virus introduction and for the potential consequences of such introductions. Results showed the existence of hotspots where the introduction risk was the highest in Belgium, in the Netherlands and in the north of Italy. This risk was higher for Eastern equine encephalomyelitis (EEE) than for the three other diseases. It was mainly attributed to exotic pet species such as rodents, reptiles or cage birds, imported in small-sized containments from a wide variety of geographic origins. The increasing species and origin diversity of these animals may have in the future a strong impact on the risk of introduction of arboviruses in the EU.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eastern equine encephalitis virus (EEEV) is transmitted to humans by the bite of an infected mosquito. Eastern equine encephalitis (EEE) is a rare illness in humans, and only a few cases are reported in the United States each year. Most cases occur in the Atlantic and Gulf Coast states. Most people infected with EEEV have no apparent illness. Severe cases of EEE (involving encephalitis, an inflammation of the brain) begin with the sudden onset of headache, high fever, chills, and vomiting. The illness may then progress into disorientation, seizures, or coma. EEE virus is one of the most severe mosquito transmitted diseases in the United States with approximately 33% mortality and significant brain damage in most survivors. There is no specific treatment for EEE; care is based on symptoms. You can reduce your risk of being infected with EEEV by using insect repellent, wearing protective clothing, and staying indoors while mosquitoes are most active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antecedentes: El síndrome de fatiga crónica/encefalomielitis miálgica (SFC/EM), un trastorno debilitante y complejo que se caracteriza por un cansancio intenso, ha sido estudiado en población general, sin embargo, su exploración en población trabajadora ha sido limitada. Objetivo: Determinar la prevalencia de síntomas asociados a SFC/EM y su relación con factores ocupacionales en personal de una empresa de vigilancia en Bogotá, durante el año 2016. Materiales y métodos: Estudio de corte transversal en una empresa de vigilancia, utilizando como instrumento para la recolección de datos la historia clínica-ocupacional. En las variables cualitativas se obtuvieron frecuencias simples y porcentajes y en las variables cuantitativas medidas de tendencia central y de dispersión. Se determinaron asociaciones entre variables (Ji-cuadrado de Pearson o test exacto de Fisher, valores esperados <5), (mann-whitney.y un modelo de regresión logística incondicional (p<0.05)). Resultados: Se evaluaron 162 trabajadores, los síntomas de SFC/EM con mayor prevalencia fueron sueño no reparador (38,3%) y dolor muscular (30,2%). Se encontró asociación estadísticamente significativa entre fatiga severa y crónica por al menos 6 meses con alteración en sistema nervioso (p=0,016) y consumo de medicamentos (p=0,043), así mismo entre el sueño no reparador con el número de horas de sueño de 5 a 7 horas (p=0,002). Conclusión: En los vigilantes el síntoma de SFC/EM más prevalente fue sueño no reparador y este se asoció con el número de horas de sueño de 5 a 7 horas. Con el estudio se pudieron determinar los casos probables de SFC/EM los cuales se beneficiarían de una valoración médica integral para un diagnóstico oportuno.