999 resultados para Embryonic mortality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim was to determine the factors that contribute to embryonic mortality in buffaloes mated by AI during a period of increasing day length which corresponds to a natural decline in reproductive activity. Italian Mediterranean buffalo cows (n = 243) showing regular estrous cycles were synchronized using the Ovsynch-TAI program and mated by AI at 16 and 40 h after the second injection of GnRH. Blood samples were collected on Days 10 and 20 after the first AI and assayed for progesterone (P-4). Pregnancy diagnosis was undertaken on Days 26 and 40 after the first AI using rectal ultrasonography. Buffaloes with a conceptus on Day 26 but not on Day 40 were judged to have undergone embryonic mortality and for these animals uterine fluid was recovered by flushing and analysed for common infectious agents. Estrus synchronization was achieved in 86% of buffaloes and the pregnancy rate on Day 40 was 34%. Embryonic mortality between Days 26 and 40 occurred in 45% of buffaloes and was associated with the presence of significant infectious agents in only 10 buffaloes (8%). Concentrations of P-4 on Day 10 after AI were higher (P < 0.05) in buffaloes that established a pregnancy than in buffaloes that showed embryonic mortality that was not associated with infectious agents. Similarly, on Day 20 after AI P-4 concentrations were higher (P < 0.01) in pregnant buffaloes compared with non-pregnant buffaloes and buffaloes that had embryonic mortality. It is concluded that a reduced capacity for P-4 secretion can explain around 50% of embryonic mortalities in buffaloes synchronised and mated by AI during a period of low reproductive activity and that other as yet unidentified factors also have a significant effect on embryonic survival. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous research has shown that amphibians have differential sensitivity to ultraviolet-B (UV-B) radiation. In some species, ambient levels of UV-B radiation cause embryonic mortality in nature. The detrimental effects of UV-B alone or with other agents may ultimately affect amphibians at the population level. Here, we experimentally demonstrate a synergistic effect between UV-B radiation and a pathogenic fungus in the field that increases the mortality of amphibian embryos compared with either factor alone. Studies investigating single factors for causes of amphibian egg mortality or population declines may not reveal the complex factors involved in declines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background
A large number of studies in postcopulatory sexual selection use paternity success as a proxy for fertilization success. However, selective mortality during embryonic development can lead to skews in paternity in situations of polyandry and sperm competition. Thus, when assessment of paternity fails to incorporate mortality skews during early ontogeny, this may interfere with correct interpretation of results and subsequent evolutionary inference. In a previous series of in vitro sperm competition experiments with amphibians (Litoria peronii), we showed skewed paternity patterns towards males more genetically similar to the female.

Methodology/Principal Findings
Here we use in vitro fertilizations and sperm competition trials to test if this pattern of paternity of fully developed tadpoles reflects patterns of paternity at fertilization and if paternity skews changes during embryonic development. We show that there is no selective mortality through ontogeny and that patterns of paternity of hatched tadpoles reflects success of competing males in sperm competition at fertilization.

Conclusions/Significance
While this study shows that previous inferences of fertilization success from paternity data are valid for this species, rigorous testing of these assumptions is required to ensure that differential embryonic mortality does not confound estimations of true fertilization success.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the critical period of the maternal recognition, which occurs between days 15 and 19 of pregnancy, the conceptus must competently synthesize molecules capable of blocking the synthesis of prostaglandin F2α (PGF2α) and luteolysis. In cattle, the major macromolecule involved in suck blockage is the protein interferontau (IFN-τ). During the critical period, failures in the recognition of pregnancy determine embryonic mortality on up to 40% of inseminated cows. Data about IFN-τ in Bos taurus indicus are still scarce. Objective of this study was to quantitatively evaluate the presence of IFN-τ during the critical period for maternal recognition of pregnancy in uterine flushings obtained in vivo by Foley catheter (Days 14, 16 and 18 post estrus) or post-mortem (Day 18 post estrus). Multiparous, cyclic or pregnant zebu cows (Bos taurus indicus) on days 14, 16 and 18 post estrus were used for in vivo or post mortem uterine flushing collection. In both cases, a Ringer solution was used to wash the uterus of cows. Uterine flushings were concentrated by ultrafiltration and lyophilized. Proteins were separated by one-dimensional electrophoresis (SDS-PAGE) in a 15% polyacrilamide gel. Interferontau quantification in uterine flushings was performed by western blotting and densitometry. Non-specific protein bands were observed in both in vivo and post mortem uterine flushings. Interferon-tau was detected only in uterine flushings obtained from pregnant cows post-mortem (P<0.05). Optical density of protein bands was not affected by the day of the critical period, state (cyclic or pregnant) or interaction day x state. There was no effect of the conceptus weight or progesterone concentration on the day of uterine flushing collection in the optical density of the IFN-τ protein band. It was concluded that the detection and quantification of IFN-τ in the uterine environment of zebu cows, in these experimental?conditions, is only possible in uterine flushings obtained post-mortem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the process of artificial incubation of fertile eggs of chicken (Gallus gallus domesticus) there are procedures that, they are not hindered the birth, they cause embryonic mortality. Handlings before incubation as disinfection and storage are capable to reduce the embryonic if accomplished of inadequate way viability. Already in the incubation process properly says, irregularities in variables as temperature, turning, humidity and ventilation in the incubator reduce the hatchability, what means that, of the total of fertile eggs there is reduction in the number of born chicks, there is like this the reduction of profit of the incubator, being necessary an analysis of which they interfered in the birth

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pregnancy establishment, followed by birth of live offspring, is essential to all mammals. The biological processes leading up to pregnancy establishment, maintenance, and birth are complex and dependent on the coordinated timing of a series of events at the molecular, cellular, and physiological level. The ability to ovulate a competent oocyte, which is capable of undergoing fertilization, is only the initial step in achieving a successful pregnancy. Once fertilization has occurred and early embryonic development is initiated, early pregnancy detection is critical to provide proper prenatal care (humans) or appropriate management (domestic livestock). However, the simple presence of an embryo, early in gestation, does not guarantee the birth of a live offspring. Pregnancy loss (embryonic mortality, spontaneous abortions, etc.) has been well documented in all mammals, especially in humans and domestic livestock species, and is a major cause of reproductive loss. It has been estimated that only about 25-30 % of all fertilized oocytes in humans result in birth of a live offspring; however, identifying the embryos that will not survive to parturition has not been an easy task. Therefore, investigators have focused the identification of products in maternal circulation that permit the detection of an embryo and assessment of its well-being. This review will focus on the advances in predicting embryonic presence and viability, in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to record the effects of thyroxine and cortisol (individual/combined) on hatching, post-embryonic growth and survival of larvae of Heteropneustes fossilis, newly fertilized eggs were given bath immersion treatments of L-thyroxine (T sub(4); 0.05 mg/l), cortisol (0.50 mg/l) and T sub(4)+ cortisol (0.05 mg/l+0.50 mg/l) for 15 days. Hatching of eggs, growth and survival of the larvae improved significantly (P<0.001) in the hormone treated groups as compared to those of control. The frequency of deformities was reduced in the combined hormone treatment group. The present observations suggest that the advanced digestive function probably induced by T sub(4)+cortisol treatment might have resulted in improvement in food utilization during the critical phases of first feeding and promoted vital developmental processes resulting in uniform growth, decreased mortality, better survival and transformation of larvae to juveniles. This combined hormone therapy appears to have practical utility in fish hatchery practice for better success in larval rearing.