91 resultados para Electroporation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today single cell research is a great interest to analyze cell to cell or cell to environment behavior with their intracellular compounds, where bulk measurement can provide average value. To deliver biomolecules precise and localized way into single living cell with high transfection rate and high cell viability is a challenging and promisible task for biological and therapeutic research. In this report, we present a nano-localized single cell nano-electroporation technique, where electroporation take place in a very precise and localized area on a single cell membrane to achieve high efficient delivery with high cell viability. We fabricated 60nm gap with 40 nm triangular Indium Tin Oxide (ITO) based nano-eletcrode tip, which can intense electric field in a nano-localized area of a single cell to permeabilize cell membrane and deliver exogenous biomolecules from outside to inside of the cell. This device successfully deliver dyes, proteins into single cell with high cell viability (98%). The process not only control precise delivery mechanism into single cell with membrane reversibility, but also it can provide special, temporal and qualitative dosage control, which might be beneficial for therapeutic and biological cell studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article features two most commonly techniques for gene transfer in fish, microinjection and electroporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haemorrhage can be an epidemic and fatal condition in grass carp. It is known now that the Grass Carp Haemorrhage Virus (GCHV) triggers haemorrhage. Human lactoferrin (hLF) plays an important role in the non-specific immune system, making some organisms more resistant to some viruses. Sperm of grass carp was mixed with linearized pCAhLFc, which is a DNA construct containing an hLF cDNA and the promoter of common carp beta-actin gene, and then electroporated. Then, mature eggs were fertilized in vitro with the treated sperm cells. The fry were sampled and analyzed by polymerase chain reaction (PCR). Results indicated that the foreign gene had been transferred successfully into the cells of some fry. Under optimal electroporation conditions, the efficiency of gene transfer was as high as 46.8%. About 35.7% of treated 5-month-old grass carp contained foreign genes. Most transgenic fry demonstrated significant delays in onset of symptoms of haemerrhage after injection of GCHV, suggesting a significant positive relationship between hLF cDNA and levels of disease resistance (P < 0.01). Results suggest that transgenic grass carp could be bred for increased resistance to haemorrhage. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究背景与目的:近二十年来,抗生素的广泛使用以及一些不当应用导致临床上出现大量的耐药性病原菌,所以不易产生耐药性的抗菌肽就成为目前研究的热点。本课题组此前的研究表明无指盘臭蛙(Odorrana grahami)皮肤抗菌肽具有广谱抗菌活性,但对真核细胞没有毒性,因此有成为新型药物的潜力。本研究采用毕赤酵母真核表达系统来生物合成抗菌肽Odorgrin A和Odorgrin C,为大量获取抗菌肽资源提供技术支撑。 方法:依照Odorgrin A和C的氨基酸序列、采用酵母偏爱密码子分别设计并化学合成了相应的目的基因序列。目的片段从合成质粒上用Xho Ι和EcoR Ι双酶切下后,与经同样限制酶完全酶切pPIC9K载体所获得的两个大片段直接连接,并转化至大肠杆菌DH5α。用PCR扩增、酶切及测序检测,鉴定正确的重组质粒。提取大量表达载体pPIC9K - Odo A和C并使之线性化后经电击法分别转化毕赤酵母(Pichia pastoris)GS115宿主菌,用营养缺陷型筛选、遗传霉素抗性筛选、PCR扩增和测序检测,鉴定并筛选出对G418具高抗性的Odorgrin A和C重组酵母菌。用甲醇对之进行诱导表达,SDS - PAGE电泳及反相层析检测表达产物,并做抑菌活性检测。 成果:PCR扩增、酶切及测序等结果表明表达载体pPIC9K - Odo A和C构建成功。营养缺陷型筛选、遗传霉素抗性筛选、PCR扩增和测序等证实pPIC9K - Odo A和C已整合入酵母基因组中。SDS - PAGE电泳及反相层析结果表明抗菌肽Odorgrin A和C成功地获得了分泌表达。而抑菌活性实验则检测到部分阳性克隆菌诱导分泌表达的抗菌肽Odorgrin A和C都对测试菌的生长具有较高(>94%)的抑制率。 结论:无指盘臭蛙皮肤抗菌肽Odorgrin A和Odorgrin C基因的表达载体都构建成功,并且都在毕赤酵母系统中获得了成功表达。 Background & Objective: In the recent twenty years, a lot of pathogenic bacteria have come forth in clinic with durable trait derived from making use of and abusing the traditional antibiotics. Therefore, studying antimicrobial peptides, not be easy to be invalidated by durable bacteria, are becomimg popular and important. The skin antimicrobial peptides of Odorrana grahami with broad spectrum antibacterial activity and no toxicity to eukaryotic cell, discovered by previous research work of our workgroup, are looked forward to being potential medication. Pichia pastoris expressional system was used for biosynthesis antimicrobial peptides Odorgrin A and Odorgrin C in this study, for producing abundant antimicrobial peptides. Methods: The foreign fragments which included Odorgrin A or Odorgrin C gene according to their amino acid sequence respectively were synthesized based on the biased codon usage of yeast. The DNA fragments, obtained from the plasmids containing them by digested with Xho Ι and EcoR Ι, were directly ligated with the two bigger fragments obtained from the vector pPIC9K by digested with the same restriction enzymes. And then they were transformed into Escherichia coli DH5α to be selected and amplified positive colonies. The recombinants were testified by using PCR amplification, enzymes digestion and sequencing of the foreign fragment. After the expressional vector pPIC9K - Odo A and pPIC9K - Odo C were linearized, they were transformed into Pichia pastoris GS115 strain by the electroporation. Then the positive colonies which were of the highest geneticin resistant were selected through auxotrophic screening, genetic resistant screening, PCR amplification and sequencing of the inserted fragment. Methanol was used to induce the recombinant yeasts to express the foreign gene. SDS-PAGE electrophoresis, reversed phase chromatography and antibacterial activity experiment were used to testify the expressional products. Results: The evidences of PCR, enzymes digestion and sequence analysis confirmed that the expressional vector pPIC9K - Odo A and pPIC9K - Odo C have been constructed correctly. The results of auxotrophic screening, of genetic resistant screening, of PCR and sequencing of the foreign fragment showed that Odorgrin A and Odorgrin C gene have been homologous integrated with the Pichia pastoris genome. And it was also testified that antimicrobial peptides Odorgrin A and Odorgrin C have been expressed successfully by using SDS - PAGE electrophoresis, reversed phase chromatography and antibacterial activity experiment. Conclusion: The expressional vector of the skin antimicrobial peptides Odorgrin A and Odorgrin C gene of Odorrana grahami have been constructed correctly and both of the genes have been expressed successfully in Pichia pastoris system in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic transformation by electroporation of protoplasts is a standard procedure for many plants. However, for the genus Porphyra, the method is not effective because of low viability of protoplasts and is a time-consuming and expensive procedure. Based on the life history of Porphyra, a spore-targeted strategy of genetic transformation was developed, that is, using fresh conchospores of Porphyra haitanensis Chang & Zheng transformed by agitation with glass beads. A SV40 promoter-driven lacZ reporter gene was expressed in conchospores 48 h after the agitation. More transformants were obtained by increasing the agitation time from 10 to 25 s. The maximum number of transformants was more than six out of 1 million agitated conchospores. Transfer of a SV40 promoter-driven egfp gene into conchospores resulted in significant green GFP fluorescence. The expression of lacZ and egfp revealed that this strategy of spore-targeted transformation using glass bead agitation is feasible in P. haitanensis and that the SV40 promoter is effective for monitoring expression of foreign genes in this red algal species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large-scale production of cardiomyocytes is a key step in the development of cell therapy and tissue engineering to treat cardiovascular diseases, particularly those caused by ischemia. the main objective of this study was to establish a procedure for the efficient production of cardiomyocytes by reprogramming mesenchymal stem cells from adipose tissue. First, lentiviral vectors expressing neoR and GFP under the control of promoters expressed specifically during cardiomyogenesis were constructed to monitor cell reprogramming into precardiomyocytes and to select cells for amplification and characterization. Cellular reprogramming was performed using 5'-azacytidine followed by electroporation with plasmid pOKS2a, which expressed Oct4, Sox2, and Klf4. Under these conditions, GFP expression began only after transfection with pOKS2a, and less than 0.015% of cells were GFP(+). These GFP(+) cells were selected for G418 resistance to find molecular markers of cardiomyocytes by RT-PCR and immunocytochemistry. Both genetic and protein markers of cardiomyocytes were present in the selected cells, with some variations among them. Cell doubling time did not change after selection. Together, these results indicate that enrichment with vectors expressing GFP and neoR under cardiomyocyte-specific promoters can produce large numbers of cardiomyocyte precursors (CMPs), which can then be differentiated terminally for cell therapy and tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The obligate anaerobe Bacteroides fragilis is a normal resident of the human gastrointestinal tract. The clinically derived B. fragilis strain NCTC 9343 produces an extensive array of extracellular polysaccharides (EPS), including antigenically distinct large, small and micro- capsules. The genome of NCTC 9343 encodes multiple gene clusters potentially involved in the biosynthesis of EPS, eight of which are implicated in production of the antigenically variable micro-capsule. We have developed a rapid and robust method for generating marked and markerless deletions, together with efficient electroporation using unmodified plasmid DNA to enable complementation of mutations. We show that deletion of a putative wzz homologue prevents production of high-molecular-mass polysaccharides (HMMPS), which form the micro-capsule. This observation suggests that micro-capsule HMMPS constitute the distal component of LPS in B. fragilis. The long chain length of this polysaccharide is strikingly different from classical enteric O-antigen, which consists of short-chain polysaccharides. We also demonstrate that deletion of a putative wbaP homologue prevents expression of the phase-variable large capsule and that expression can be restored by complementation. This suggests that synthesis of the large capsule is mechanistically equivalent to production of Escherichia coli group 1 and 4 capsules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perhaps the greatest barrier to development of the field of transmembrane drug delivery is that only a limited number of drugs are amenable to administration by this route. The highly lipophilic nature and barrier function of the uppermost layer of the skin, the stratum corneum, for example, restricts the permeation of hydrophilic, high molecular weight and charged compounds into the systemic circulation. Other membranes in the human body can also present significant barriers to drug permeation. In order to successfully deliver hydrophilic drugs, and macromolecular agents of interest, including peptides, DNA and small interfering RNA, many research groups and pharmaceutical companies Worldwide are focusing on the use of microporation methods and devices. Whilst there are a variety of microporation techniques, including the use of laser, thermal ablation, electroporation, radiofrequency, ultrasound, high pressure jets, and microneedle technology, they share the common goal of enhancing the permeability of a biological membrane through the creation of transient aqueous transport pathways of micron dimensions across that membrane. Once created, these micropores are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of hydrophilic macromolecules. Additionally, microporation devices also enable minimally-invasive sampling and monitoring of biological fluids. This review deals with the innovations relating to microporation-based methods and devices for drug delivery and minimally invasive monitoring, as disclosed in recent patent literature. © 2010 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolving RNA interference (RNAi) platforms are providing opportunities to probe gene function in parasitic helminths using reverse genetics. Although relatively robust methods for the application of RNAi in parasitic flatworms have been established, reports of successful RNAi are confined to three genera and there are no known reports of the application of RNAi to the class Cestoda. Here we report the successful application of RNAi to a cestode. Our target species was the common ruminant tapeworm, Moniezia expansa which can significantly impact the health/productivity of cattle, sheep and goats. Initial efforts aimed to silence the neuronally expressed neuropeptide F gene (Me-npf-1), which encodes one of the most abundant neuropeptides in flatworms and a homologue of vertebrate neuropeptide Y (NPY). Double stranded (ds)RNAs, delivered by electroporation and soaking (4-8 h), failed to trigger consistent Me-npf-1 transcript knock-down in adult worms; small interfering RNAs (siRNAs) were also ineffective. Identical approaches resulted in significant and consistent transcript knock-down of actin transcript (71 +/- 4%) following soaking in Me-act-1 dsRNA. Similar successes were seen with hydrophobic lipid-binding protein (Me-lbp-1), with a dsRNA inducing significant target transcript reduction (72 +/- 5%). To confirm the validity of the observed transcript knock-downs we further investigated Me-act-1 RNAi worms for associated changes in protein levels, morphology and phenotype. Me-act-1 RNAi worms displayed significant reductions in both filamentous actin immunostaining (62 +/- 3%) and the amount of actin detected in Western blots (54 +/- 13%). Morphologically, Me-act-1 RNAi worms displayed profound tegumental disruption/blebbing. Further, muscle tension recordings from Me-act-1 RNAi worms revealed a significant reduction in both the number of worms contracting in response to praziquantel (20 +/- 12%) and in their contractile ability. These data demonstrate, to our knowledge for the first time, a functional RNAi pathway in a cestode and show that the robust knock-down of abundant gene transcripts is achievable using long dsRNAs following short exposure times. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research shows that approximately half of the coagulase-negative staphylococci (CNS) isolated from patients in the intensive care unit (ICU) at Belfast City Hospital were resistant to methicillin. The presence of this relatively high proportion of methicillin-resistance genetic material gives rise to speculation that these organisms may act as potential reservoirs of methicillinresistance genetic material to methicillin-sensitive Staphylococcus aureus (MSSA). Mechanisms of horizontal gene transfer from PBP2a-positive CNS to MSSA, potentially transforming MSSA to MRSA, aided by electroporation-type activities such as transcutaneous electrical nerve stimulation (TENS), should be considered. Methicillin-resistant CNS (MR-CNS) isolates are collected over a two-month period from a variety of clinical specimen types, particularly wound swabs. The species of all isolates are confirmed, as well as their resistance to oxacillin by standard disc diffusion assays. In addition, MSSA isolates are collected over the same period and confirmed as PBP2a-negative. Electroporation experiments are designed to mimic the time/voltage combinations used commonly in the clinical application of TENS. No transformed MRSA were isolated and all viable S. aureus cells remained susceptible to oxacillin and PBP2a-negative. Experiments using MSSA pre-exposed to sublethal concentrations of oxacillin (0.25 µg/mL) showed no evidence of methicillin gene transfer and the generation of an MRSA. The study showed no evidence of horizontal transfer of methicillin resistance genetic material from MR-CNS to MSSA. These data support the belief that TENS and the associated time/voltage combinations used do not increase conjugational transposons or facilitate horizontal gene transfer from MR-CNS to MSSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional genomics have not been reported for Opisthorchis viverrini or the related fish-borne fluke, Clonorchis sinensis. Here we describe the introduction by square wave electroporation of Cy3-labeled small RNA into adult O. viverrini worms. Adult flukes were subjected to square wave electroporation employing a single pulse for 20 ms of 125V in the presence of 50 µg/ml of Cy3-siRNA. The parasites tolerated this manipulation and, at 24 and 48 h after electroporation, fluorescence from the Cy3-siRNA was evident throughout the parenchyma of the worms, with strong fluorescence evident in the guts and reproductive organs of the adult worms. Second, other worms were treated using the same electroporation settings with double stranded RNA targeting an endogenous papain-like cysteine protease, cathepsin B. This manipulation resulted in a significant reduction in specific mRNA levels encoding cathepsin B, and a significant reduction in cathepsin B activity against the diagnostic peptide, Z-Arg-Arg-AMC. This appears to be the first report of introduction of reporter genes into O. viverrini and the first report of experimental RNA interference (RNAi) in this fluke. The findings indicated the presence of an intact RNAi pathway in these parasites which, in turn, provides an opportunity to probe gene functions in this neglected tropical disease pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.

METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.

CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.