912 resultados para Electrochemical impedance
Resumo:
Electrochemical redox reactions of ferrous/ferric (Fe2+/Fe3+) and hydroquinone/quinone (H(2)Q/Q) were studied on Pt and polyaniline (PANI)-deposited Pt electrodes in 0.5 M H2SO4-supporting electrolyte by cyclic voltammetry and ac impedance spectroscopy. A comparison of the experimental data obtained with the Pt and PANI/Pt electrodes suggested that the reactions were catalyzed by the PANI. Based on a relative increase in peak currents of cyclic voltammograms, catalytic efficiency (gamma(cv)) of the PANI was defined. There was an increase in gamma(cv) with an increase of scan rate and a decrease of concentration of Fe2+/Fe3+ or H(2)Q. The complex plane impedance spectrum of the electrode consisted of a semicircle in high frequency range and a linear spike in low frequency range. The exchange current density (i(0)) calculated using the semicircle part of the impedance showed Butler-Volmer kinetics with respect to concentration dependence. From a relative increase of i(0) on the PANI/Pt electrode, catalytic efficiency (gamma(eis)) was evaluated. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Detailed analysis of alternating current impedance data of LiMn2O4 electrodes measured at several temperatures and potentials was carried out. The Nyquist plots generally consisted of semicircles corresponding to two time constants. However, at low temperatures (-10 to 10 A degrees C) and potential region between 3.90 and 4.20 V, three time constants were present. The third semicircle present at the middle to high frequency range was attributed to electronic resistance of LiMn2O4. Impedance parameters were evaluated using appropriate electrical equivalent circuits. From the temperature dependence of resistive parameters, activation energy values for the corresponding processes were calculated.
Resumo:
Various Plasma Electrolytic Oxidation (PEO) ceramic coatings were prepared on LY12 aluminum alloy by adjusting the concentration of sodium silicate solution. Optical microscope (OM), XRD and EIS were used to study their morphology, composition and anti corrosion behavior in NaCl solution. Increasing concentration of sodium silicate leads to the increase of the total coating thickness while too high and too low concentration lead to the decrease of inner dense layer. The main composition of PEO coatings prepared in 20, 40 and above 60g/L concentration solution are correspondingly alumina, alumina with mullite, and amorphous phase. The corrosion resistance is determined by the inner dense layer. Increasing the thickness of inner dense layer can improve the anti-corrosion performance. PEO coating's corrosion resistance in acidic, alkaline and neutral NaCl solution is proved and the corrosion mechanism involved is also discussed.
Resumo:
In an attempt to ascertain the rate-determining steps (RDS) of TiO2 photoelectrocatalytic (PEC) reaction, the PEC oxidation of sulfosalicylic acid (SSA) solution in a TiO2-coated electrode reactor system was monitored by applying the electrochemical impedance spectroscopy (EIS) method. In the meantime, an EIS mathematical model was first established to theoretically simulate the PEC reaction. Based on the EIS model, the theoretical simulation indicates three typical reactions in a PEC oxidation process, which include the charge-transfer-dominated reaction, both the charge-transfer- and adsorption-dominated reaction, and the adsorption-dominated reaction. The experimental results of EIS measurement showed that there was only one arc/semicircle on the EIS plane display when the external bias applied was below 200 mV (vs SCE) in the SSA PEC degradation whereas there were two arcs/semicircles when the externally applied bias exceeded 200 mV (vs SCE). The experimental results have a good agreement with the model simulation. The EIS method in this study provides an easier way to determine the RDS in a PEC oxidation process, which would be helpful to better control the reaction in practice.
Resumo:
Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.
Resumo:
The hybridization of immobilized oligonucleotides probe strands with solution phase targets is the underlying principle of microarraybased techniques for the analysis of DNA variation. To study the kinetics of DNA/DNA hybridization, target DNA is often prior labeled with markers. A label-free method of electrochemical impedance spectra (EIS) for study the hybridization in process was reported. The Langmuir model was used to determine the association rate constant (K-on), the dissociation rate constant (K-off) and the affinity rate constant (K-A), for perfect matched DNA hybridization. The results show that, EIS is a successful technique possessing high effectivity and sensitivity to study DNA/DNA hybridization kinetics. This work can provide another view on EIS for the studying of DNA/DNA hybridization.
Resumo:
Several methods have been used for the measurement of the electronic decay constant (beta) of organic molecules. However, each of them has some disadvantages. For the first time, electrochemical impedance spectroscopy (EIS) was used to obtain the 18 value by measuring the tunneling resistance through alkanedithiols. The tunneling resistance through alkanedithiols increases exponentially with the molecular length in terms of the mechanism of coherent nonresonant tunneling. beta was 0.51 +/- 0.01 per carbon.
Resumo:
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
Thiol-terminated oligonucleotide was immobilized to gold surface by self-assembly method. A novel amplification strategy was introduced for improving the sensitivity of DNA. hybridization using biotin labeled protein-streptavidin network complex. This complex can be formed in a cross-linking network of molecules so that the amplification of the response signal will be realized due to the big molecular size of the complex. It could be proved from the impedance technique that this amplification strategy caused dramatic improvement of the detection sensitivity. These results give significant advances in the generality and sensitivity as it is applied to biosensing.