926 resultados para Econometric methods of discrete choice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper considers the use of artificial regression in calculating different types of score test when the log

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the nature of health care provider choice inthe case of patient-initiated contacts, with special reference toa National Health Service setting, where monetary prices are zeroand general practitioners act as gatekeepers to publicly financedspecialized care. We focus our attention on the factors that mayexplain the continuously increasing use of hospital emergencyvisits as opposed to other provider alternatives. An extendedversion of a discrete choice model of demand for patient-initiatedcontacts is presented, allowing for individual and town residencesize differences in perceived quality (preferences) betweenalternative providers and including travel and waiting time asnon-monetary costs. Results of a nested multinomial logit model ofprovider choice are presented. Individual choice betweenalternatives considers, in a repeated nested structure, self-care,primary care, hospital and clinic emergency services. Welfareimplications and income effects are analyzed by computingcompensating variations, and by simulating the effects of userfees by levels of income. Results indicate that compensatingvariation per visit is higher than the direct marginal cost ofemergency visits, and consequently, emergency visits do not appearas an inefficient alternative even for non-urgent conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na presente dissertação tem como objetivo avaliar o impacto do programa JUNTOS sobre a taxa de freqüência escolar e sobre o trabalho infantil nas crianças de 6 a 14 anos. Estas duas variáveis foram selecionadas para o seu estudo, pois ao nosso entender estas são as principais variáveis que são influenciadas pelo programa JUNTOS e que tem uma influencia direta sobre o capital humano das crianças e assim sobre a diminuição da pobreza futura. As principais hipóteses derivadas das teorias de capital humano e de transferências de rendas condicionadas foram corroboradas pela nossa avaliação: (1) o programa JUNTOS tem um efeito positivo sobre o incremento da freqüência escolar, (2) o programa JUNTOS é efetivo na redução do trabalho infantil, (3) quando o chefe de família é de sexo feminino, a renda familiar é utilizada em bens e serviços em favor das crianças, e (4) o efeito do programa JUNTOS é maior nas crianças com piores características socioeconômicas (ex: menor renda familiar per capita, chefe de família com poucos anos de estudo, idioma do chefe de família, etc.) Outra conclusão importante da dissertação foi que o programa JUNTOS provoca uma realocação na oferta de trabalho intra familiar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2010, a household survey was carried out in Hungary among 1037 respondents to study consumer preferences and willingness to pay for health care services. In this paper, we use the data from the discrete choice experiments included in the survey, to elicit the preferences of health care consumers about the choice of health care providers. Regression analysis is used to estimate the effect of the improvement of service attributes (quality, access, and price) on patients’ choice, as well as the differences among the socio-demographic groups. We also estimate the marginal willingness to pay for the improvement in attribute levels by calculating marginal rates of substitution. The results show that respondents from a village or the capital, with low education and bad health status are more driven by the changes in the price attribute when choosing between health care providers. Respondents value the good skills and reputation of the physician and the attitude of the personnel most, followed by modern equipment and maintenance of the office/hospital. Access attributes (travelling and waiting time) are less important. The method of discrete choice experiment is useful to reveal patients’ preferences, and might support the development of an evidence-based and sustainable health policy on patient payments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To assess Spanish and Portuguese patients' and physicians' preferences regarding type 2 diabetes mellitus (T2DM) treatments and the monthly willingness to pay (WTP) to gain benefits or avoid side effects. METHODS An observational, multicenter, exploratory study focused on routine clinical practice in Spain and Portugal. Physicians were recruited from multiple hospitals and outpatient clinics, while patients were recruited from eleven centers operating in the public health care system in different autonomous communities in Spain and Portugal. Preferences were measured via a discrete choice experiment by rating multiple T2DM medication attributes. Data were analyzed using the conditional logit model. RESULTS Three-hundred and thirty (n=330) patients (49.7% female; mean age 62.4 [SD: 10.3] years, mean T2DM duration 13.9 [8.2] years, mean body mass index 32.5 [6.8] kg/m(2), 41.8% received oral + injected medication, 40.3% received oral, and 17.6% injected treatments) and 221 physicians from Spain and Portugal (62% female; mean age 41.9 [SD: 10.5] years, 33.5% endocrinologists, 66.5% primary-care doctors) participated. Patients valued avoiding a gain in bodyweight of 3 kg/6 months (WTP: €68.14 [95% confidence interval: 54.55-85.08]) the most, followed by avoiding one hypoglycemic event/month (WTP: €54.80 [23.29-82.26]). Physicians valued avoiding one hypoglycemia/week (WTP: €287.18 [95% confidence interval: 160.31-1,387.21]) the most, followed by avoiding a 3 kg/6 months gain in bodyweight and decreasing cardiovascular risk (WTP: €166.87 [88.63-843.09] and €154.30 [98.13-434.19], respectively). Physicians and patients were willing to pay €125.92 (73.30-622.75) and €24.28 (18.41-30.31), respectively, to avoid a 1% increase in glycated hemoglobin, and €143.30 (73.39-543.62) and €42.74 (23.89-61.77) to avoid nausea. CONCLUSION Both patients and physicians in Spain and Portugal are willing to pay for the health benefits associated with improved diabetes treatment, the most important being to avoid hypoglycemia and gaining weight. Decreased cardiovascular risk and weight reduction became the third most valued attributes for physicians and patients, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new Bayesian econometric specification for a hypothetical Discrete Choice Experiment (DCE) incorporating respondent ranking information about attribute importance. Our results indicate that a DCE debriefing question that asks respondents to rank the importance of attributes helps to explain the resulting choices. We also examine how mode of survey delivery (online and mail) impacts model performance, finding that results are not substantively a§ected by the mode of survey delivery. We conclude that the ranking data is a complementary source of information about respondent utility functions within hypothetical DCEs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economists and policymakers have long been concerned with increasing the supply of health professionals in rural and remote areas. This work seeks to understand which factors influence physicians’ choice of practice location right after completing residency. Differently from previous papers, we analyse the Brazilian missalocation and assess the particularities of developing countries. We use a discrete choice model approach with a multinomial logit specification. Two rich databases are employed containing the location and wage of formally employed physicians as well as details from their post-graduation. Our main findings are that amenities matter, physicians have a strong tendency to remain in the region they completed residency and salaries are significant in the choice of urban, but not rural, communities. We conjecture this is due to attachments built during training and infrastructure concerns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete-event simulation (DES) is a developed technology used to model manufacturing and service systems. However, although the importance of modelling people in a DES has been recognised, there is little guidance on how this can be achieved in practice. The results from a literature review were used in order to identify examples of the use of DES to model people. Each article was examined in order to determine the method used to model people within the simulation study. It was found that there are no common methods but a diverse range of approaches used to model human behaviour in DES. This paper provides an outline of the approaches used to model people in terms of their decision making, availability for work, task performance and arrival rate. The outcome brings together the current knowledge in this area and will be of interest to researchers considering developing a methodology for modelling people in DES and to practitioners engaged with a simulation project involving the model ling of people’s behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When it comes to information sets in real life, often pieces of the whole set may not be available. This problem can find its origin in various reasons, describing therefore different patterns. In the literature, this problem is known as Missing Data. This issue can be fixed in various ways, from not taking into consideration incomplete observations, to guessing what those values originally were, or just ignoring the fact that some values are missing. The methods used to estimate missing data are called Imputation Methods. The work presented in this thesis has two main goals. The first one is to determine whether any kind of interactions exists between Missing Data, Imputation Methods and Supervised Classification algorithms, when they are applied together. For this first problem we consider a scenario in which the databases used are discrete, understanding discrete as that it is assumed that there is no relation between observations. These datasets underwent processes involving different combina- tions of the three components mentioned. The outcome showed that the missing data pattern strongly influences the outcome produced by a classifier. Also, in some of the cases, the complex imputation techniques investigated in the thesis were able to obtain better results than simple ones. The second goal of this work is to propose a new imputation strategy, but this time we constrain the specifications of the previous problem to a special kind of datasets, the multivariate Time Series. We designed new imputation techniques for this particular domain, and combined them with some of the contrasted strategies tested in the pre- vious chapter of this thesis. The time series also were subjected to processes involving missing data and imputation to finally propose an overall better imputation method. In the final chapter of this work, a real-world example is presented, describing a wa- ter quality prediction problem. The databases that characterized this problem had their own original latent values, which provides a real-world benchmark to test the algorithms developed in this thesis.