987 resultados para Early Proteins


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The immune system has to recognize and destroy abnormal or infected cells to maintain homeostasis. Natural killer (NK) cells directly recognize and kill transformed or virus-infected cells without prior sensitization. We have studied both virus-infected and tumor cells in order to identify the target structures involved in triggering NK activity. Mouse/human cell hybrids containing various human chromosomes were used as targets. The human chromosome responsible for activating NK cell killing was identified to chromosome number 6. The results suggest that activated NK cells recognize ligands that are encoded on human chromosome 6. We showed that the ligand on the target cell side was intercellular adhesion molecule 2 (ICAM-2). There was no difference in the level of expression of ICAM-2, however, but a drastic difference was seen in the distribution of the molecule: ICAM-2 was evenly distributed on the surface of the NK-resistant cells, but almost totally redistributed to the tip of uropods, bud-like extensions, which were absent from the parental cells. Interestingly, the gene coding for cytoskeletal linker protein ezrin has been localized to human chromosome 6, and there was a colocalization of ezrin and ICAM-2 in the uropods. Furthermore, the transfected human ezrin into NK cell-resistant cells induced uropod formation, ICAM-2 and ezrin redistribution to newly formed uropods, and sensitized target cells to NK cell killing. These data reveal a novel form of NK cell recognition: target structures are already present on normal cells; they become detectable only after abnormal redistribution into hot spots on the target cell membrane. NK cells are central players in the defence against virus infections. They inhibit the spread of infection, allowing time for specific immune responses to develop. The virus-proteins that directly activate human NK cell killing are largely unknown. We studied the sensitivity of virus-specific early proteins of Semliki Forest virus (SFV) to NK killing. The viral non-structural proteins (nsP1-4) translated early in the virus cycle were transfected in NK-resistant cells. Viral early gene nsP1 alone efficiently sensitized target cells to NK activity, and the tight membrane association of nsP1 seems to be critical in the triggering of NK killing. NsP1 protein colocalized with (redistributed) ezrin in filopodia-like structures to which the NK cells were bound. The results suggest that also in viral infections NK cells react to rapid changes in membrane topography. Based on the results of this thesis, a new model of target cell recognition of NK cells can be suggested: reorganization of the cytoskeleton induces alterations in cell surface topography, and this new pattern of surface molecules is recognized as "altered-self".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Head and neck squamous cell carcinoma is a disease associated with tobacco and alcohol abuse. There is evidence that the oncogenic human papillomavirus (HPV) may also be a risk for upper aerodigestive tract cancers. High-risk HPVs encode two early proteins, E6 and E7, that can bind to p53 and pRb, respectively, and induce its degradation or inactivation. The TP53 gene has a single polymorphism at codon 72 of exon 4 that encodes either arginine (Arg) or proline (Pro). The purpose of this study was to evaluate the role of HPV infection and TP53 polymorphism in head and neck cancer. We analyzed 50 tumors, as well swabs of oral mucosa front 142 control individuals, with a polymerase chain reaction technique. The prevalence of HPV in controls was 10.6% and in cancer specimens 16%. The frequency distribution of genotypes in controls was 50% Arg/Arg, 43% Arg/ Pro and 7% Pro/Pro; in tumors, it was 52% Arg/Arg, 32% Arg/Pro, and 16% Pro/Pro. Contrary to the results of some studies on cervical cancer, no association between any TP53 genotype or allele and the development of head and neck cancer was observed, regardless of HPV status, except for the Pro/Pro genotype, which is associated with the absence of HPV. The arginine allele appears to protect against head and neck cancers. Also, the data showed that HPV infection results in no increased risk of developing head and neck tumors. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Although immunization with tumor antigens can eliminate many transplantable tumors in animal models, immune effector mechanisms associated with successful immunotherapy of epithelial cancers remain undefined. Methods: Skin from transgenic mice expressing the cervical cancer-associated tumor antigen human papillornavirus type 16 (HPV16) E6 or E7 proteins from a keratin 14 promoter was grafted onto syngeneic, non-transgenic mice. Skin graft rejection was measured after active immunization with HPV16 E7 and adoptive transfer of antigen-specific T cells. Cytokine secretion of lymphocytes from mice receiving skin grafts and immunotherapy was detected by enzyme-linked immunosorbent assay, and HPV16 E7-specific memory CD8(+) T cells were detected by flow cytometry and ELISPOT. Results: Skin grafts containing HPV16 E6- or E7-expressing keratinocytes were not rejected spontaneously or following immunization with E7 protein and adjuvant. Adoptive transfer of E7-specific T-cell receptor transgenic CD8(+) T cells combined with immunization resulted in induction of antigen-specific interferon gamma-secreting CD8(+) T cells and rejection of HPV16 E7-expressing grafts. Specific memory CD8(+) T cells were generated by immunotherapy. However, a further HPV16 E7 graft was rejected from animals with memory T cells only after a second E7 immunization. Conclusions: Antigen-specific CD8(+) T cells can destroy epithelium expressing HPV16 E7 tumor antigen, but presentation of E7 antigen from skin is insufficient to reactivate memory CD8(+) T cells induced by immunotherapy. Thus, effective cancer immunotherapy in humans may need to invoke sufficient effector as well as memory T cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coatomer, a cytosolic heterooligomeric protein complex that consists of seven subunits [alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP (nonclathrin coat protein)], has been shown to interact with dilysine motifs typically found in the cytoplasmic domains of various endoplasmic-reticulum-resident membrane proteins [Cosson, P. & Letourneur, F. (1994) Science 263, 1629-1631]. We have used a photo-cross-linking approach to identify the site of coatomer that is involved in binding to the dilysine motifs. An octapeptide corresponding to the C-terminal tail of Wbp1p, a component of the yeast N-oligosaccharyltransferase complex, has been synthesized with a photoreactive phenylalanine at position -5 and was radioactively labeled with [125I]iodine at a tyrosine residue introduced at the N terminus of the peptide. Photolysis of isolated coatomer in the presence of this peptide and immunoprecipitation of coatomer from photo-cross-linked cell lysates reveal that gamma-COP is the predominantly labeled protein. From these results, we conclude that coatomer is able to bind to the cytoplasmic dilysine motifs of membrane proteins of the early secretory pathway via its gamma-COP subunit, whose complete cDNA-derived amino acid sequence is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.