973 resultados para EXPONENTIAL ENRICHMENT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selection procedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

G-protein-coupled receptors are desensitized by a two-step process. In a first step, G-protein-coupled receptor kinases (GRKs) phosphorylate agonist-activated receptors that subsequently bind to a second class of proteins, the arrestins. GRKs can be classified into three subfamilies, which have been implicated in various diseases. The physiological role(s) of GRKs have been difficult to study as selective inhibitors are not available. We have used SELEX (systematic evolution of ligands by exponential enrichment) to develop RNA aptamers that potently and selectively inhibit GRK2. This process has yielded an aptamer, C13, which bound to GRK2 with a high affinity and inhibited GRK2-catalyzed rhodopsin phosphorylation with an IC50 of 4.1 nM. Phosphorylation of rhodopsin catalyzed by GRK5 was also inhibited, albeit with 20-fold lower potency (IC50 of 79 nM). Furthermore, C13 reveals significant specificity, since almost no inhibitory activity was detectable testing it against a panel of 14 other kinases. The aptamer is two orders of magnitude more potent than the best GRK2 inhibitors described previously and shows high selectivity for the GRK family of protein kinases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptameraptamer, aptamernonaptamer biomacromolecules (siRNAs, proteins) and aptamernanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aptamers, also known as chemical antibodies, are short single-stranded DNA, RNA or peptide molecules. These molecules can fold into complex three-dimensional structures and bind to target molecules with high affinity and specificity. The nucleic acid aptamers are selected from combinatorial libraries by an iterative in vitro selection procedure known as systematic evolution of ligands by exponential enrichment (SELEX). As a new class of therapeutics and drug targeting entities, bivalent and multivalent aptamer-based molecules are emerging as highly attractive alternatives to monoclonal antibodies as targeted therapeutics.

Aptamers have several advantages, offering the possibility of overcoming limitations of antibodies: 1) they can be selected against toxic or non-immunogenic targets; 2) aptamers can be chemically modified by using modified nucleotides to enhance their stability in biological fluids or via incorporating reporter molecules, radioisotopes and functional groups for their detection and immobilization; 3) they have very low immunogenicity; 4) they display high stability at room temperature, in extreme pH, or solvent; 5) once selected, they can be chemically synthesized free from cell- culturederived contaminants, and they can be manufactured at any time, in large amounts, at relatively low cost and reproducibly; 6) they are smaller and thus can diffuse more rapidly into tissues and organs, leading to faster targeting in drug delivery; 7) they have lower molecular weight that can lead to faster body clearance, resulting in a low background noise for imaging and minimizing the radiation dose to the patient in diagnostic imaging. Thus, the high selectivity and sensitivity, ease of screening and production, chemical versatility as well as stability make aptamers a class of highly attractive agents for the development of novel therapeutics, targeted drug delivery vehicles and molecular imaging.

In the review, we will discuss the latest technological advances in developing aptamers, its application as a novel class of drug on its own, as well as in surface functionalization of both polymer nanoparticles or nanoliposomes in the treatment of cancer, viral and autoimmune diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selectionprocedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aptamers represent the novel class of oligonucleotides holding multiple applications in the area of biomedicine. The advancements introduced with the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach further eased the scope of producing modified aptamers within a short span yet retaining the properties of stability and applicability. In the recent times, aptamers were identified to have the potential for penetrating into the deep human crevices and thus can be utilized in addressing the issues of complex neurological disorders. Considering the specificity and stability enhancement by chemical modifications, aptamer-based nanotechnologies may have great potential for future therapeutics and diagnostics (theranostics). The research community has already witnessed success with the approval of macugen (an anti-vascular endothelial growth factor aptamer) for treating degenerating eye disease, and hopefully those that are in the clinical trials will soon be translated for human application. Herein, we have summarized the aptamer chemistry, aptamer-nanoconjugates and their applications against neurological diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using systematic evolution of ligands by exponential enrichment (SELEX), an RNA molecule was isolated that displays a 1,000-fold higher affinity for guanosine residues that carry an N-7 methyl group than for nonmethylated guanosine residues. The methylated guanosine residue closely resembles the 5′ terminal cap structure present on all eukaryotic mRNA molecules. The cap-binding RNA specifically inhibited the translation of capped but not uncapped mRNA molecules in cell-free lysates prepared from either human HeLa cells or from Saccharomyces cerevisiae. These findings indicate that the cap-binding RNA will also be useful in studies of other cap-dependent processes such as pre-mRNA splicing and nucleocytoplasmic mRNA transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443–473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix–turn–helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selectins are calcium-dependent C-type lectins that recognize complex anionic carbohydrate ligands, initiating many cell-cell interactions in the vascular system. Selectin blockade shows therapeutic promise in a variety of inflammatory and postischemic pathologies. However, the available oligosaccharide ligand mimetics have low affinities and show cross-reaction among the three selectins, precluding efficient and specific blockade. The SELEX (systematic evolution of ligands by exponential enrichment) process uses combinatorial chemistry and in vitro selection to yield high affinity oligonucleotides with unexpected binding specificities. Nuclease-stabilized randomized oligonucleotides subjected to SELEX against recombinant L-selectin yielded calcium-dependent antagonists with approximately 10(5) higher affinity than the conventional oligosaccharide ligand sialyl LewisX. Most of the isolated ligands shared a common consensus sequence. Unlike sialyl LewisX, these antagonists show little binding to E- or P-selectin. Moreover, they show calcium-dependent binding to native L-selectin on peripheral blood lymphocytes and block L-selectin-dependent interactions with the natural ligands on high endothelial venules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Posttranscriptional regulation of genes of mammalian iron metabolism is mediated by the interaction of iron regulatory proteins (IRPs) with RNA stem-loop sequence elements known as iron-responsive elements (IREs). There are two identified IRPs, IRP1 and IRP2, each of which binds consensus IREs present in eukaryotic transcripts with equal affinity. Site-directed mutagenesis of IRP1 and IRP2 reveals that, although the binding affinities for consensus IREs are indistinguishable, the contributions of arginine residues in the active-site cleft to the binding affinity are different in the two RNA binding sites. Furthermore, although each IRP binds the consensus IRE with high affinity, each IRP also binds a unique alternative ligand, which was identified in an in vitro systematic evolution of ligands by exponential enrichment procedure. Differences in the two binding sites may be important in the function of the IRE-IRP regulatory system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of at least 24 distinct genes of Pseudomonas aeruginosa PAO1 is under direct control of the "ferric uptake regulator" (Fur). Novel targets of the Fur protein were isolated in a powerful SELEX (systematic evolution of ligands by exponential enrichment)-like cycle selection consisting of in vitro DNA-Fur interaction, binding to anti-Fur antibody, purification on protein G, and PCR amplification. DNA fragments obtained after at least three exponential enrichment cycles were cloned and subjected to DNA mobility-shift assays and DNase I footprint analyses to verify the specific interaction with the Fur protein in vitro. Iron-dependent expression of the corresponding genes in vivo was monitored by RNase protection analysis. In total, 20 different DNA fragments were identified which represent actual Pseudomonas iron-regulated genes (PIGs). While four PIGs are identical to already known genes (pfeR, pvdS, tonB, and fumC, respectively), 16 PIGs represent previously unknown genes. Homology studies of the putative proteins encoded by the PIGs allowed us to speculate about their possible function. Two PIG products were highly similar to siderophore receptors from various species, and three PIG products were significantly homologous to alternative sigma factors. Furthermore, homologs of the Escherichia coli ORF1-tolQ, nuoA, stringent starvation protein Ssp, and of a two-component regulatory system similar to the Pseudomonas syringae LemA sensor kinase were identified. The putative gene products of seven additional PIGs did not show significant homologies to any known proteins. The PIGs were mapped on the P.aeruginosa chromosome. Their possible role in iron metabolism and virulence of P. aeruginosa is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used an in vitro selection procedure called crosslinking SELEX (SELEX = systematic evolution of ligands by exponential enrichment) to identify RNA sequences that bind with high affinity and crosslink to the Rev protein from human immunodeficiency virus type 1 (HIV-1). A randomized RNA library substituted with the photoreactive chromophore 5-iodouracil was irradiated with monochromatic UV light in the presence of Rev. Those sequences with the ability to photocrosslink to Rev were partitioned from the rest of the RNA pool, amplified, and used for the next round of selection. Rounds of photocrosslinking selection were alternated with rounds of selection for RNA sequences with high affinity to Rev. This iterative, dual-selection method yielded RNA molecules with subnanomolar dissociation constants and high efficiency photocrosslinking to Rev. Some of the RNA molecules isolated by this procedure form a stable complex with Rev that is resistant to denaturing gel electrophoresis in the absence of UV irradiation. In vitro selection of nucleic acids by using modified nucleotides allows the isolation of nucleic acid molecules with potentially limitless chemical capacities to covalently attack a target molecule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aptamers, also known as chemical antibodies, are single-stranded nucleic acid oligonucleotides which bind to their targets with high specificity and affinity. They are typically selected by repetitive in vitro process termed systematic evolution of ligands by exponential enrichment (SELEX). Owing to their excellent properties compared to conventional antibodies, notably their smaller physical size and lower immunogenicity and toxicity, aptamers have recently emerged as a new class of agents to deliver therapeutic drugs to cancer cells by targeting specific cancer-associated hallmarks. Aptamers can also be structurally modified to make them more flexible in order to conjugate other agents such as nano-materials and therapeutic RNA agents, thus extending their applications for cancer therapy. This review presents the current knowledge on the practical applications of aptamers in the treatment of a variety of cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.