994 resultados para ERI SILK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eri silk produced by Philosamia cynthia ricini silkworm is a fibre not well-known to the silk industry, in spite of the fact that Eri silk is finer, softer, and has better mechanical and thermal properties than most animal fibres. Eri silk has a high commercial potential, as the host plants of Eri silk worms are widespread in diverse geographical locations, and the worms also have a higher degree of disease resistance than most other silk worms. Mills are often not aware of the properties of Eri for designing appropriate end products. Thus, Eri silk yarn is traditionally produced by hand spinning, and Eri silk usually ends up as material for handwoven shawls. The potential for bulk fibre processing and the development of soft luxurious novel Eri silk products is yet to be discovered. To better understand the material and its processing behaviour, Eri silk was characterised and cocoons were processed into tops through degumming, opening, and cutting filaments into different lengths, followed by a worsted spun silk processing route. Fibre properties such as fineness, crimp, strength and length at different processing stages up to combed tops were measured. The results indicate that staple Eri silk can be processed via the worsted topmaking route, using a cut length of 200 mm or 150 mm for filament sheets prepared from degummed cocoons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroin protein derived from silk fibres has been extensively studied with exciting outcomes for a number of potential advanced biomaterial applications. However, one of the major challenges in applications lies in engineering fibroin into a  desired form using a convenient production technology. In this paper, fabrication of ultrafine powder from eri silk is reported. The silk cocoons were degummed and the extracted silk fibres were then chopped into snippets prior to attritor and air jet milling. Effects of process control agents, material load and material to water ratio during attritor milling were studied. Compared to dry and dry–wet attritor milling, wet process emerged as the preferred option as it caused less colour change and facilitated easy handling. Ultrafine silk powder with a volume based particle size d(0.5) of around 700 nm could be prepared following the sequence of chopping ➔ wet attritor milling ➔ spray drying ➔ air jet milling. Unlike most reported powder production methods, this method could fabricate silk particles in a short time without any pre-treatment on degummed fibre. Moreover, the size range obtained is much smaller than that previously produced using standard milling devices. Reduction in fibre tenacity either shortened the milling time even further or helped bypassing media milling to produce fine powder directly through jet milling. However, such reduction in fibre strength did not help in increasing the ultimate particle fineness. The study also revealed that particle density and particle morphology could be manipulated through appropriate changes in the degumming process.

Graphical Abstract:  Fabrication of eri silk powder using attritor and jet milling is reported. Volume based particle size d(0.5) of around 700 nm could be prepared following the sequence chopping ➔ wet attritor milling ➔ spray drying ➔ air jet milling. No pre-treatments were used and the particle size range obtained is much smaller than that previously produced using standard milling devices. Particle density morphology could be manipulated through appropriate changes of cocoon degumming conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR-) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silk is a structural protein fiber that is stable over a wide pH range making it attractive for use in medical and environmental applications. Variation in amino acid composition has the potential for selective binding for ions under varying conditions. Here we report on the metal ion separation potential of Mulberry and Eri silk fibers and powders over a range of pH. Highly sensitive radiotracer probes, 64Cu2+, 109Cd2+, and 57Co2+ were used to study the absorption of their respective stable metal ions Cu2+, Cd2+, and Co2+ into and from the silk sorbents. The total amount of each metal ion absorbed and time taken to reach equilibrium occurred in the following order: Cu2+ > Cd2+ > Co 2+. In all cases the silk powders absorbed metal ions faster than their respective silk fibers. Intensive degumming of the fibers and powders significantly reduced the time to absorb respective metal ions and the time to reach equilibrium was reduced from hours to 5-15 min at pH 8. Once bound, 45-100% of the metal ions were released from the sorbents after exposure to pH 3 buffer for 30 min. The transition metal ion loading capacity for the silk sorbents was considerably higher than that found for commercial ion exchange resins (AG MP-50 and AG 50W-X2) under similar conditions. Interestingly, total Cu2+ bound was found to be higher than theoretically predicted values based on known specific Cu2+ binding sites (AHGGYSGY), suggesting that additional (new) sites for transition metal ion binding sites are present in silk fibers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silk particles of different sizes and shapes were produced by milling and interactions with a series of polar and non-polar gaseous probes were investigated using an inverse gas chromatography technique. The surface energy of all silk materials is mostly determined by long range dispersive interactions such as van der Waals forces. The surface energy increases and surface energy heterogeneity widens after milling. All samples have amphoteric surfaces and the concentration of acidic groups increases after milling while the surfaces remain predominantly basic. We also examined powder compression and flow behaviours using a rheometer. Increase in surface energy, surface area, and static charges in sub-micron air jet milled particles contributed to their aggregation and therefore improved flowability. However they collapse under large pressures and form highly cohesive powder. Alkaline hydrolysis resulted in more crystalline fibres which on milling produced particles with higher density, lower surface energy and improved flowability. The compressibility, bulk density and cohesion of the powders depend on the surface energy as well as on particle size, surface area, aggregation state and the testing conditions, notably the consolidated and unconsolidated states. The study has helped in understanding how surface energy and flowability of particles can be changed via different fabrication approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study examined the structure, thermal property, and ion adsorption of silk particles. The particles were prepared by attritor-bead mill combination, using alkaline (pH10) charge repulsion and surfactant steric repulsion methods. Both methods produced particles with a dominant β-sheet structure, similar to the silk fibre. There was no significant difference in the decomposition temperatures for either the silk fibre or the micro/nano silk particles. An important finding from this study is clear evidence of reduction of amorphous content during the final stage of powdering using the bead mill. As a result, despite reduction in β-sheet crystallites with the progressive milling, the relative β-sheet content actually increased during this process. However, intermolecular forces between the β-sheets reduced significantly and hence the XRD results showed significant reduction in crystallinity in nano silk particles but crystal forming segments remained with β-sheet conformations after milling. The structural change influenced the ion-adsorption property where particle-size reduction resulted in a significant increase in both the rate and volume of HCrO4- adsorption. © 2014 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two approaches are used for silk particle production: bottom up and top down. In the bottom up approach, different liquid-solid phase transfer techniques are adapted to fabricate particles from silk solution. In the top down approach, silk fibres are milled by various means to prepare ultrafine silk particles. Many important properties of particles such as size, geometry, porosity, stability and biodegradability are dependent on the specific methods of particle production. These properties influence drug loading and release, delivery modes, biocompatibility and their clearance from the body. Particle properties also determine biomechanical properties of particle reinforced composite scaffolds. Thus correlation between preparation, characterisation and application of silk particles for a specific biomedical application is critical. Progress made in this direction and challenges ahead are discussed in this chapter. © 2014 Woodhead Publishing Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study reports the fabrication of ultra-fine powders from animal protein fibres such as cashmere guard hair, merino wool and eri silk along with their free volume aspects. The respectively mechanically cleaned, scoured and degummed cashmere guard hair, wool and silk fibres were converted into dry powders by a process sequence: Chopping, Attritor Milling, and Spray Drying. The fabricated protein fibre powders were characterised by scanning electron microscope, particle size distribution and positron annihilation lifetime spectroscopy (PALS). The PALS results indicated that the average free volume size in protein fibres increased on their wet mechanical milling with a decrease in the corresponding intensities leading to a resultant decrease in their fractional free volumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 ilk fibres from silkworm cocoons have lower strength than spider silk and have received less attention as a source of high-performance fibres. In this work, we have used an innovative procedure to eliminate the flaws gradually of a single fibre specimen by retesting the unbroken portion of the fibre, after each fracture test. This was done multiple times so that the final test may provide the intrinsic fibre strength. During each retest, the fibre specimen began to yield once the failure load of the preceding test was exceeded. For each fibre specimen, a composite curve was constructed from multiple tests. The composite curves and analysis show that strengths of mass-produced Muga and Eri cocoon silk fibres increased from 446 to 618 MPa and from 337 to 452 MPa, respectively. Similarly, their toughness increased from 84 to 136 MJ m(-3) and from 61 to 104 MJ m(-3), respectively. Composite plots produced significantly less inter-specimen variations compared to values from single tests. The fibres with reduced flaws as a result of retests in the tested section have a tensile strength and toughness comparable to naturally spun dragline spider silk with a reported strength of 574 MPa and toughness of 91-158 MJ m(-3), which is used as a benchmark for developing high-performance fibres. This retesting approach is likely to provide useful insights into discrete flaw distributions and intrinsic mechanical properties of other fatigue-resistant materials.