928 resultados para Dual Specificity Phosphatase 3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redox regulation of signalling pathways is critical in proliferation and apoptosis; redox imbalance can lead to pathologies such as inflammation and cancer. Vaccinia H1-related protein (VHR; DUSP3) is a dual-specificity phosphatase important in controlling MAP kinase activity during cell cycle. the active-site motif contains a cysteine that acts as a nucleophile during catalysis. We used VHR to investigate the effect of oxidation in vitro on phosphatase activity, with the aim of determining how the profile of site-specific modification related to catalytic activity. Recombinant human VHR was expressed in E. coli and purified using a GST-tag. Protein was subjected to oxidation with various concentrations of SIN-1 or tetranitromethane (TNM) as nitrating agents, or HOCl. the activity was assayed using either 3-O-methylfluorescein phosphate with fluorescence detection or PIP3 by phosphate release with malachite green. the sites of oxidation were mapped using HPLC coupled to tandem mass spectrometry on an ABSciex 5600TripleTOF following in-gel digestion. More than 25 different concentration-dependent oxidative modifications to the protein were detected, including oxidations of methionine, cysteine, histidine, lysine, proline and tyrosine, and the % oxidized peptide (versus unmodified peptide) was determined from the extracted ion chromatograms. Unsurprisingly, methionine residues were very susceptible to oxidation, but there was a significant different in the extent of their oxidation. Similarly, tyrosine residues varied greatly in their modifications: Y85 and Y138 were readily nitrated, whereas Y38, Y78 and Y101 showed little modification. Y138 must be phosphorylated for MAPK phosphatase activity, so this susceptibility impacts on signalling pathways. Di- and tri- oxidations of cysteine residues were observed, but did not correlate directly with loss of activity. Overall, the catalytic activity did not correlate with redox state of any individual residue, but the total oxidative load correlated with treatment concentration and activity. This study provides the first comprehensive analysis of oxidation modifications of VHR, and demonstrates both heterogenous oxidant effects and differential residue susceptibility in a signalling phosphatase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein tyrosine phosphatases (PTPs) have long been thought to play a role in tumor suppression due to their ability to antagonize the growth promoting protein tyrosine kinases. Recently, a candidate tumor suppressor from 10q23, termed P-TEN, was isolated, and sequence homology was demonstrated with members of the PTP family, as well as the cytoskeletal protein tensin. Here we show that recombinant P-TEN dephosphorylated protein and peptide substrates phosphorylated on serine, threonine, and tyrosine residues, indicating that P-TEN is a dual-specificity phosphatase. In addition, P-TEN exhibited a high degree of substrate specificity, showing selectivity for extremely acidic substrates in vitro. Furthermore, we demonstrate that mutations in P-TEN, identified from primary tumors, tumor cells lines, and a patient with Bannayan–Zonana syndrome, resulted in the ablation of phosphatase activity, demonstrating that enzymatic activity of P-TEN is necessary for its ability to function as a tumor suppressor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus -infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: beta(3)-Integrins are involved in platelet aggregation via alpha(IIb)beta(3) [glycoprotein (GP)IIb-GPIIIa], and in angiogenesis via endothelial alpha(V)beta(3). Cross-reactive ligands with antiaggregatory and proangiogenic effects, both desirable in peripheral vasculopathies, have not yet been described. OBJECTIVES: In vitro and in vivo characterization of antiaggregatory and proangiogenic effects of two recombinant human Fab fragments, with emphasis on beta(3)-integrins. METHODS: Recombinant Fab fragments were obtained by phage display technology. Specificity, affinity and IC(50) were determined by immunodot assays, enzyme-linked immunosorbent assay (ELISA), and Scatchard plot analysis, and by means of human umbilical vein endothelial cells (HUVECs). Functional analyses included ELISA for interaction with fibrinogen binding to GPIIb-GPIIIa, flow cytometry for measurement of activation parameters and competitive inhibition experiments, human platelet aggregometry, and proliferation, tube formation and the chorioallantoic membrane (CAM) assay for measurement of angiogenic effects. RESULTS: We observed specific and high-affinity binding to an intact GPIIb-GPIIIa receptor complex of two human Fab autoantibody fragments, with no platelet activation. Dose-dependent fibrinogen binding to GPIIb-GPIIIa and platelet aggregation were completely inhibited. One Fab fragment was competitively inhibited by abciximab and its murine analog monoclonal antibody (mAb) 7E3, whereas the other Fab fragment bound to cultured HUVECs, suggesting cross-reactivity with alpha(V)beta(3), and also demonstrated proangiogenic effects in tube formation and CAM assays. CONCLUSIONS: These Fab fragments are the first entirely human anti-GPIIb-GPIIIa Fab fragments with full antiaggregatory properties; furthermore, they do not activate platelets. The unique dual-specificity anti-beta(3)-integrin Fab fragment may represent a new tool for the study and management of peripheral arterial vasculopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cdc25, the dual-specificity phosphatase that dephosphorylates the Cdc2–cyclin B complex at mitosis, is highly regulated during the cell cycle. In Xenopus egg extracts, Cdc25 is associated with two isoforms of the 14-3-3 protein. Cdc25 is complexed primarily with 14-3-3ε and to a lesser extent with 14-3-3ζ. The association of these 14-3-3 proteins with Cdc25 varies dramatically during the cell cycle: binding is high during interphase but virtually absent at mitosis. Interaction with 14-3-3 is mediated by phosphorylation of Xenopus Cdc25 at Ser-287, which resides in a consensus 14-3-3 binding site. Recombinant Cdc25 with a point mutation at this residue (Cdc25-S287A) is incapable of binding to 14-3-3. Addition of the Cdc25-S287A mutant to Xenopus egg extracts accelerates mitosis and overrides checkpoint-mediated arrests of mitotic entry due to the presence of unreplicated and damaged DNA. These findings indicate that 14-3-3 proteins act as negative regulators of Cdc25 in controlling the G2–M transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein tyrosine phosphatases (PTPs) are comprised of two superfamilies, the phosphatase I superfamily containing a single low-molecular-weight PTP (lmwPTP) family and the phosphatase II superfamily including both the higher-molecular-weight PTP (hmwPTP) and the dual-specificity phosphatase (DSP) families. The phosphatase I and H superfamilies are often considered to be the result of convergent evolution. The PTP sequence and structure analyses indicate that lmwPTPs, hmwPTPs, and DSPs share similar structures, functions, and a common signature motif, although they have low sequence identities and a different order of active sites in sequence or a circular permutation. The results of this work suggest that lmwPTPs and hmwPTPs/DSPs are remotely related in evolution. The earliest ancestral gene of PTPs could be from a short fragment containing about 90similar to120 nucleotides or 30similar to40 residues; however, a probable full PTP ancestral gene contained one transcript unit with two lmwPTP genes. All three PTP families may have resulted from a common ancestral gene by a series of duplications, fusions, and circular permutations. The circular permutation in PTPs is caused by a reading frame difference, which is similar to that in DNA methyltransferases. Nevertheless, the evolutionary mechanism of circular permutation in PTP genes seems to be more complicated than that in DNA methyltransferase genes. Both mechanisms in PTPs and DNA methyltransferases can be used to explain how some protein families and superfamilies came to be formed by circular permutations during molecular evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins of the DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) family are characterized by the presence of a conserved kinase domain and N-terminal DH box. DYRK2 is involved in regulating key developmental and cellular processes, such as neurogenesis, cell proliferation, cytokinesis, and cellular differentiation. Herein, we report that the ortholog of DYRK2 found in zebrafish shares about 70% identity with that of human, mouse, and chick. RT-PCR showed that DYRK2 is expressed maternally and zygotically. In-situ hybridization results show that DYRK2 is expressed in somite cells that will develop into muscles. Our results provide preliminary evidence for investigating the in-vivo function of DYRK2 in zebrafish muscle development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dual-specificity protein tyrosine phosphatases (PTPs) play integral roles in the regulation of cell signaling. There is a need for new tools to study these phosphatases, and the identification of inhibitors potentially affords not only new means for their study, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of selective inhibitors of the protein phosphatases has proven somewhat difficult. PTP localized to mitochondrion 1 (PTPMT1) is a recently discovered dual-specificity phosphatase that has been implicated in the regulation of insulin secretion. Screening of a commercially available small-molecule library yielded alexidine dihydrochloride, a dibiguanide compound, as an effective and selective inhibitor of PTPMT1 with an in vitro concentration that inhibits response by 50% of 1.08 microM. A related dibiguanide analog, chlorhexidine dihydrochloride, also significantly inhibited PTPMT1, albeit with lower potency, while a monobiguanide analog showed very weak inhibition. Treatment of isolated rat pancreatic islets with alexidine dihydrochloride resulted in a dose-dependent increase in insulin secretion, whereas treatment of a pancreatic beta-cell line with the drug affected the phosphorylation of mitochondrial proteins in a manner similar to genetic inhibition of PTPMT1. Furthermore, knockdown of PTPMT1 in rat islets rendered them insensitive to alexidine dihydrochloride treatment, providing evidence for mechanism-based activity of the inhibitor. Taken together, these studies establish alexidine dihydrochloride as an effective inhibitor of PTPMT1, both in vitro and in cells, and support the notion that PTPMT1 could serve as a pharmacological target in the treatment of type II diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-alpha-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and L-glycero-D-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-alpha-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-alpha-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mirabegron is the first β3-adrenoceptor (AR) agonist approved for treatment of overactive bladder syndrome (OAB). This study aimed to investigate the effects of β3-adrenoceptor (AR) agonist mirabegron in mouse urethra. The possibility that mirabegron exerts α1-AR antagonism was also tested in rat smooth muscle preparations presenting α1A- (vas deferens and prostate), α1D- (aorta) and α1B-AR (spleen). Functional assays were carried out in mouse and rat isolated tissues. Competition assays for the specific binding of [(3) H]Prazosin to membrane preparations of HEK 293 cells expressing each of the human α1-ARs, as well as β-AR mRNA expression and cyclic AMP measurements in mouse urethra were performed. Mirabegron produced concentration-dependent urethral relaxations that were right shifted by the selective β3-AR antagonist L 748,337, but unaffected by β1- and β2-AR antagonists (atenolol and ICI 118,551, respectively). Mirabegron-induced relaxations were enhanced by the phosphodiesterase-4 inhibitor rolipram, and this agonist stimulated cAMP synthesis. Mirabegron also produced rightward shifts in urethral contractions induced by the α1-AR agonist phenylephrine. Schild regression analysis revealed that mirabegron behaves as a competitive antagonist of α1-AR in urethra, vas deferens and prostate (α1A-AR, pA2  ≅ 5.6) and aorta (α1D-AR, pA2  ≅ 5.4), but not in spleen (α1B-AR). The affinities estimated for mirabegron in functional assays were consistent with those estimated in radioligand binding with human recombinant α1A- and α1D-ARs (pKi ≅ 6.0). The effects of mirabegron in urethral smooth muscle are the result of β3-AR agonism together with α1A / α1D-AR antagonism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cysteinyl-tRNA (Cys-tRNA) is essential for protein synthesis. In most organisms the enzyme responsible for the formation of Cys-tRNA is cysteinyl-tRNA synthetase (CysRS). The only known exceptions are the euryarchaea Methanococcus jannaschii and Methanobacterium thermoautotrophicum, which do not encode a CysRS. Deviating from the accepted concept of one aminoacyl-tRNA synthetase per amino acid, these organisms employ prolyl-tRNA synthetase as the enzyme that carries out Cys-tRNA formation. To date this dual-specificity prolyl-cysteinyl-tRNA synthetase (ProCysRS) is only known to exist in archaea. Analysis of the preliminary genomic sequence of the primitive eukaryote Giardia lamblia indicated the presence of an archaeal prolyl-tRNA synthetase (ProRS). Its proS gene was cloned and the gene product overexpressed in Escherichia coli. By using G. lamblia, M. jannaschii, or E. coli tRNA as substrate, this ProRS was able to form Cys-tRNA and Pro-tRNA in vitro. Cys-AMP formation, but not Pro-AMP synthesis, was tRNA-dependent. The in vitro data were confirmed in vivo, as the cloned G. lamblia proS gene was able to complement a temperature-sensitive E. coli cysS strain. Inhibition studies of CysRS activity with proline analogs (thiaproline and 5′-O-[N-(l-prolyl)-sulfamoyl]adenosine) in a Giardia S-100 extract predicted that the organism also contains a canonical CysRS. This prediction was confirmed by cloning and analysis of the corresponding cysS gene. Like a number of archaea, Giardia contains two enzymes, ProCysRS and CysRS, for Cys-tRNA formation. In contrast, the purified Saccharomyces cerevisiae and E. coli ProRS enzymes were unable to form Cys-tRNA under these conditions. Thus, the dual specificity is restricted to the archaeal genre of ProRS. G. lamblia's archaeal-type prolyl- and alanyl-tRNA synthetases refine our understanding of the evolution and interaction of archaeal and eukaryal translation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé: L’autophagie est un processus essentiel au maintien de l’homéostasie cellulaire. Elle permet de dégrader et recycler aussi bien des organelles entières que des composants cytoplasmiques non fonctionnels. De plus, l’augmentation d’autophagie en condition de stress constitue une réponse adaptative favorisant la survie cellulaire. Chez les cardiomyocytes, l’autophagie en condition basale est indispensable au renouvellement, entre autres, des mitochondries et des protéines formant les sarcomères. De plus, les stress tels l’ischémie cardiaque ou la carence en nutriments induisent une augmentation de l’autophagie protectrice. Dans certaines conditions extrêmes, il a été suggéré qu’un surcroît d’autophagie puisse toutefois exacerber la pathologie cardiaque en provoquant la mort des cardiomyocytes. Considérant l’importance de ce processus dans la physiopathologie cardiaque, l’identification des mécanismes signalétiques régulant l’autophagie chez les cardiomyocytes a été le sujet de recherches intenses. À cet effet, l’activation des Mitogen-Activated Protein Kinase (MAPK) a été démontrée pour réguler, avec d’autres voies signalétiques, l’autophagie et l’apoptose des cardiomyocytes. Il est donc probable que les Dual-Specificity Phosphatase (DUSP), enzymes clés contrôlant l’activité des MAPK, participent aussi à la régulation de l’autophagie. Afin de vérifier cette hypothèse, nous avons induit l’autophagie chez des cardiomyocytes isolés de rats nouveau-nés en culture. L’analyse de marqueurs d’autophagie par immunobuvardage démontre que l’activation des MAPK ERK1/2 et p38 corrèle avec l’activité autophagique chez les cardiomyocytes. Dans ces conditions, la diminution d’expression de la majorité des ARNm encodant les différentes DUSP retrouvées chez les cardiomyocytes contraste de façon marquée avec l’augmentation d’expression de l’ARNm Dusp5. De plus, nous avons démontré par une étude de gain de fonction que l’activation soutenue de p38 par surexpression d’un mutant MKK6 constitutivement actif stimule l’autophagie chez les cardiomyocytes. De façon surprenante, la perte de fonction de p38 obtenue par surexpression d’un mutant p38 dominant négatif n’altère en rien la réponse autophagique initiatrice dans notre modèle in vitro. Nos résultats suggèrent que les DUSP puissent réguler, via leurs actions sur les MAPK, d’importantes étapes du processus autophagique chez les cardiomyocytes.