33 resultados para Digitonin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined whether high-sucrose intake effects on lipid profile and oral glucose tolerance may be inhibited by a single administration of digitonin, a saponin from the seeds of Digitalis purpurea Male Wistar 24 rats were initially divided into two groups (n = 12): (C) was given standard chow and water; (S) received standard chow and 30% sucrose in its drinking water. After 30 days of treatments, C rats were divided into two groups (n = 6): (CC) given an intra-gastric dose 0.5 mL saline, (CD) given a single intragastric dose of 15 mg/kg digitonin. S rats were also divided into two groups (n = 6): (SC) given intra-gastric saline and (SD) given digitonin. Rats were sacrificed after the oral glucose tolerance test (OGTT) at 2 h after the digitonin administration. S rats had higher total energy intake and final body weight than C. SC rats had fasting hyperglycaemia and impaired OGTT. Digitonin in SD group improved the glucose tolerance. Triacylglycerol (TG), very-low-density lipoprotein (VLDL-C) and free fatty acid (FFA) serum concentrations were increased in SD rats from CC. Digitonin in SD rats decreased FFA and led TG and VLDL-C concentrations at the levels observed in the CC group. Despite the enhanced cholesterol in CD group from CC., the high-density lipoprotein (HDL-C) was increased in these animals. HDL-C/TG ratio was higher in CD and SD than in CC and SC, respectively. No significant differences were observed in lipid hydroperoxide(LH) between the groups. VLDL-C/LH ratio and gamma-glutamyl transferase (GGT) activity were increased in SC group and were decreased in SD rats from the SC. In conclusion digitonin enhanced glucose tolerance and had beneficial effects on serum lipids by improve antioxidant activity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phosphate-inhibitable neutral protease activity of the heavy mitochondrial fraction of rat liver is of lysosomal origin. The activity is essentially due to the thiol proteinases of the lysosomes. Digitonin treatment of the mitochondrial fraction results in the release of about 85 per cent of the neutral protease activity and the residual activity has an alkaline pH optimum and is not inhibited by phosphate. Clofibrate feeding at 0.5 per cent level in the diet results in enhanced levels of lysosomal enzymes. The increase is however restricted to the lysosome-rich fraction such that the activities associated with the heavy mitochondrial fraction show a significant decrease. It is suggested that clofibrate inhibits engulfment of mitochondria by lysosomes and this results in enhanced mitochondrial protein content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab Ea-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS-albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small nonnuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex. (C) 1994 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文主要研究了Mg2+对LHCP-II和LHCP-I在基粒膜与基质膜之间横向迁移的作用及其对激发能在两个光系统间分配的影响,进一步证实和发展了Kyle等提出的移动天线色素假说(mobile antenna hypothesis)。揭示了二价金属阳离子使激发能有利于向光系统II(PSII)分配,而不利于向光系统I(PSI)分配的生化基础。 用毛地黄皂(Digitonin)方法分离了悬浮在低渗、低浓度一价金属阳离子介质中的小麦类囊体的基粒膜与基质膜,结果发现,事先用5m MMgol2预处理过的类囊体,其基质膜比未处理的有较高的叶绿素a/b比值,基粒膜的叶绿素a/b比值变化不大。 低温荧光(77K)发射光谱表明,mg2+处理能增强类囊体膜和基粒膜的687nm荧光发射峰,降低F741/F687比值。除此以外,在对照的基质膜里还发现F687-向F688以及F741向F738的位移。 解垛叠及Mg~(2+)诱导的重垛叠实验表明,低温荧光F741/F687比值在解垛叠进程中上升,而在重垛叠过程中,F741/F687比值下降。 湿和的SDS-聚丙烯酰胺凝胶电泳分析表明,Mg2+处理使LHCP寡聚体解聚成单体,类囊体膜凝胶柱上LHCP寡聚体的含量减少,单体的含量增加。基质膜的电泳分析发现,Mg2+处理促时了LHCP从富含PSI的基质区向富含PSII的基粒膜区的迁移。同时还证明,不仅LHCP-II,LHCP-I也能向基粒膜区迁移。 进一步用梯度胶分析基粒膜与基质膜的多肽组成,发现经Mg2+处理的基质膜中相应于LHCP-II的两条多肽,25KD和27KD的量明显减少,尤其是27KD多肽变化更为显著。 此外,我们还研究了介质中pH值(H+浓度)对两个光系统间能量分配与传递的影响,发现H+的作用机理与Mg2+的不同。H+能引起膜垛叠,改变类囊体膜的低温荧光发射光谱,使F741/F687比值降低。而对基粒膜和基质膜的作用却与Mg2+作用相反。温和的SDS-聚丙烯酰胺凝胶电泳分析结果表明,pH的变化不改变类囊体膜上色素蛋白复合体的种类、组成和比例。 据此,我们比较并讨论了金属阳离子与H对光系统间能量分配与传递的影响的不同作用,认为二价金属阳离子除能引起类囊体膜垛叠、改变色素蛋白复合体的空间构象和排列,从而影响激发能在两个光系统间的分配外,还能调节和促进LHCP-II及LHCP-I从富含PSI的基质膜向富含PSII的基粒迁移,使PSII的光捕获截面增加,调节激发能有利于向PSII分配。而介质中的质子(H+)浓度的改变只能引起类囊体膜片层垛叠,可能改变光合膜中色素蛋白复合体的构象和排列,最终影响激发能在光系统间的分配。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

摘要 "发状念珠藻(Nostoc flagelliforme Born. Et Flah.),俗名发菜,是生长于干旱、半干旱土壤表面的陆生蓝藻,具有极强的抗旱能力。发菜光合作用方面的研究大多处于整体细胞水平,且研究手段非常有限。本实验对发菜光合特征进行深入研究,并探讨了发菜在干湿交替过程中能量传递的变化情况。 叶绿素和藻胆素是发菜细胞中两种主要的光合色素。发菜复水后光合活性完全恢复时,在室温(20℃)或低温(77K)下,其绝大部分的荧光是由于藻胆素被激发而产生。在室温下,大部分荧光来自藻胆体;当叶绿素被激发后,产生的荧光非常微弱。在低温下,藻胆素被激发后,荧光发射光谱中可分辨出藻胆蛋白、光系统Ⅰ和光系统Ⅱ的发射峰;叶绿素被激发后,荧光发射光谱包括光系统Ⅰ和光系统Ⅱ的荧光。相比之下,室温荧光发射光谱不适于用做发菜细胞光合作用方面的研究。 我们设计了一种新方法,从野生发菜细胞中分离得到类囊体膜及细胞质膜,并对其性质进行分析。发菜细胞外复杂的胶质结构使得现有破碎其它蓝藻细胞的方法无法破碎发菜细胞。通过实验发现,联合使用细胞破碎仪和毛地黄皂甙(0.3%)可有效破碎发菜细胞;并且毛地黄皂甙在低浓度下(≦0.5%),对色素与蛋白的结合不会造成破坏作用。随后,通过蔗糖密度梯度离心可将细胞质膜与类囊体膜分离。发菜类囊体膜的光谱性质与其它蓝藻相似。细胞质膜除结合有类胡萝卜素外,还结合有少量叶绿素前体。类囊体膜和细胞质膜膜脂及脂肪酸组成相似。其中,十六碳烯酸[16:1(9)]和亚麻酸[18:3(9,12,15)]是含量最高的两种脂肪酸,分别占总脂肪酸含量的三分之一左右。高含量的多不饱和脂肪酸可能和发菜极强的抗旱能力有关。 我们首次对发菜捕光色素蛋白复合物-藻胆体的组成和结构进行分析。发菜藻胆体为“3核+6杆”的半圆盘结构。组成藻胆体的藻胆蛋白包括藻蓝蛋白和别藻蓝蛋白。两个藻蓝蛋白六聚体通过连接肽组成藻胆体的“杆”结构。在“杆”结构中等量分布着两条连接肽(分子量分别为29kDa和34kDa)为杆连接肽和核杆连接肽。而“核”结构中核膜连接肽的分子量为103kDa。 发菜在无霜期,几乎每天经历一次复水-干燥过程:夜间的结露使发菜在黑暗中复水,而清晨太阳升起后,在光照下迅速失水进入休眠状态。我们研究了发菜在黑暗中的复水过程及在光照下失水过程中藻胆体与光系统能量传递的变化情况。发菜在黑暗中复水后,光系统Ⅱ活性无法恢复。藻胆体内及藻胆体与光系统Ⅰ的能量传递在5分钟内恢复;而藻胆体与光系统Ⅱ的能量传递只能部分恢复。我们设想,发菜在复水过程中通过双扳机-水和光-控制光合活性的恢复,以及在黑暗中部分恢复藻胆体与光系统Ⅱ的能量传递,将减少不必要的能量消耗与通过光合作用储备尽可能多的化学能-这两个生存策略有机的结合起来。发菜在光照下的失水过程中,光合活性在含水量降至90%前基本保持稳定,随后迅速下降。而在含水量达到150%后,藻胆体内的能量传递便开始受到抑制,并且随着含水量的降低,该抑制现象逐步加剧。这样,发菜在干燥过程中,通过抑制藻胆体内的能量传递,减少了传递到光系统Ⅱ反应中心的能量,从而避免了在光合活性下降过程中过剩光能对光系统Ⅱ产生的破坏作用。"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homologous (agonist-specific) desensitization of beta-adrenergic receptors (beta ARs) is accompanied by and appears to require phosphorylation of the receptors. We have recently described a novel protein kinase, beta AR kinase, which phosphorylates beta ARs in vitro in an agonist-dependent manner. This kinase is inhibited by two classes of compounds, polyanions and synthetic peptides derived from the beta 2-adrenergic receptor (beta 2AR). In this report we describe the effects of these inhibitors on the process of homologous desensitization induced by the beta-adrenergic agonist isoproterenol. Permeabilization of human epidermoid carcinoma A431 cells with digitonin was used to permit access of the charged inhibitors to the cytosol; this procedure did not interfere with the pattern of isoproterenol-induced homologous desensitization of beta 2AR-stimulated adenylyl cyclase. Inhibitors of beta AR kinase markedly inhibited homologous desensitization of beta 2ARs in the permeabilized cells. Inhibition of desensitization by heparin, the most potent of the polyanion inhibitors of beta AR kinase, occurred over the same concentration range (5-50 nM) as inhibition of purified beta AR kinase assessed in a reconstituted system. Inhibition of desensitization by heparin was accompanied by a marked reduction of receptor phosphorylation in the permeabilized cells. Whereas inhibitors of beta AR kinase inhibited homologous desensitization, inhibitors of protein kinase C and of cyclic-nucleotide-dependent protein kinases were ineffective. These data establish that phosphorylation of beta ARs by beta AR kinase is an essential step in homologous desensitization of the receptors. They further suggest a potential therapeutic value of inhibitors of beta AR kinase in inhibiting agonist-induced desensitization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta2-Adrenoceptor agonists (beta -agonists) are well known for their growth promoting and repartitioning effects in many species. Although the use of these compounds to increase muscle mass in stockfarming is prohibited within the EU, under directive 96/22/EC, significant illegal use still occurs. With legal and illegal synthesis of new structurally related compounds, the detection of traditional beta -agonists and new derivatives becomes increasingly problematical. This method describes the isolation and solubilisation of a beta2-adrenoceptor from a transfected Chinese hamster ovary cell line, using the detergent digitonin. The solubilised receptor retained its activity and was isolated from the cell membrane at a concentration of 550 +/- 100 fmol mg(-1) of solubilised protein. Competition analysis using the tritiated antagonist dihydroalprenolol revealed receptor affinity for five structurally different beta -agonists, with IC50 values ranging from 2.1 +/- 0.76 X 10(-7) M for salmeterol to 1.1 +/- 0.62 x 10(-5) M for ractopamine. This study has demonstrated that transfected cell lines with a high expression of beta2-adrenoceptors are a convenient source of active receptor material. Solubilised beta (2)-adrenoceptors could form the basis of a multi-analyte screening assay for use in routine screening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta2-Adrenoceptor agonists (beta -agonists) are well known for their growth promoting and repartitioning effects in many species. Although the use of these compounds to increase muscle mass in stockfarming is prohibited within the EU, under directive 96/22/EC, significant illegal use still occurs. With legal and illegal synthesis of new structurally related compounds, the detection of traditional beta -agonists and new derivatives becomes increasingly problematical. This method describes the isolation and solubilisation of a beta2-adrenoceptor from a transfected Chinese hamster ovary cell line, using the detergent digitonin. The solubilised receptor retained its activity and was isolated from the cell membrane at a concentration of 550 +/- 100 fmol mg(-1) of solubilised protein. Competition analysis using the tritiated antagonist dihydroalprenolol revealed receptor affinity for five structurally different beta -agonists, with IC50 values ranging from 2.1 +/- 0.76 X 10(-7) M for salmeterol to 1.1 +/- 0.62 x 10(-5) M for ractopamine. This study has demonstrated that transfected cell lines with a high expression of beta2-adrenoceptors are a convenient source of active receptor material. Solubilised beta (2)-adrenoceptors could form the basis of a multi-analyte screening assay for use in routine screening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé La ribonucléase P (RNase P) est une ribonucléoprotéine omniprésente dans tous les règnes du vivant, elle est responsable de la maturation en 5’ des précurseurs des ARNs de transfert (ARNts) et quelques autres petits ARNs. L’enzyme est composée d'une sous unité catalytique d'ARN (ARN-P) et d'une ou de plusieurs protéines selon les espèces. Chez les eucaryotes, l’activité de la RNase P cytoplasmique est distincte de celles des organelles (mitochondrie et chloroplaste). Chez la plupart des espèces, les ARN-P sont constituées de plusieurs éléments structuraux secondaires critiques conservés au cours de l’évolution. En revanche, au niveau de la structure, une réduction forte été observé dans la plupart des mtARN-Ps. Le nombre de protéines composant la RNase P est extrêmement variable : une chez les bactéries, environ quatre chez les archéobactéries, et dix chez la forme cytoplasmique des eucaryotes. Cet aspect est peu connu pour les formes mitochondriales. Dans la plupart des cas, l’identification de la mtRNase P est le résultat de longues procédures de purification comprenant plusieurs étapes dans le but de réduire au minimum le nombre de protéines requises pour l’activité (exemple de la levure et A. nidulans). Cela mène régulièrement à la perte de l’activité et de l’intégrité des complexes ribonucléo-protéiques natifs. Dans ce travail, par l’utilisation de la technique de BN-PAGE, nous avons développé une procédure d’enrichissement de l’activité RNase P mitochondriale native, donnant un rendement raisonnable. Les fractions enrichies capables de cette activité enzymatique ont été analysées par LC/MS/MS et les résultats montrent que l’holoenzyme de la RNase P de chacune des fractions contient un nombre de protéines beaucoup plus grand que ce qui était connue. Nous suggérons une liste de protéines (principalement hypothétiques) qui accompagnent l’activité de la RNase P. IV De plus, la question de la localisation de la mtRNase P de A. nidulans a été étudiée, selon nos résultats, la majorité de la mtRNase P est attachée á la membrane interne de la mitochondrie. Sa solubilisation se fait par l’utilisation de différents types de détergent. Ces derniers permettent l’obtention d’un spectre de complexes de la RNase P de différentes tailles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incubation of T. cruzi epimastigotes with the lectin Cramoll 1,4 in Ca(2+) containing medium led to agglutination and inhibition of cell proliferation. The lectin (50 A mu g/ml) induced plasma membrane permeabilization followed by Ca(2+) influx and mitochondrial Ca(2+) accumulation, a result that resembles the classical effect of digitonin. Cramoll 1,4 stimulated (five-fold) mitochondrial reactive oxygen species (ROS) production, significantly decreased the electrical mitochondrial membrane potential (Delta I(m)) and impaired ADP phosphorylation. The rate of uncoupled respiration in epimastigotes was not affected by Cramoll 1,4 plus Ca(2+) treatment, but oligomycin-induced resting respiration was 65% higher in treated cells than in controls. Experiments using T. cruzi mitochondrial fractions showed that, in contrast to digitonin, the lectin significantly decreased Delta I(m) by a mechanism sensitive to EGTA. In agreement with the results showing plasma membrane permeabilization and impairment of oxidative phosphorylation by the lectin, fluorescence microscopy experiments using propidium iodide revealed that Cramoll 1,4 induced epimastigotes death by necrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the growth of Kluyveromyces marxianus var. marxianus ATCC 10022 on lactose, peaks of glucose, but not β-galactosidase activity, were detected in culture medium. Harvested and washed whole cells produced glucose and galactose from lactose, or ortho-nitro-phenol from the chromogenic substrate ortho-nitro-phenyl-β-D-galactopyranoside (ONPG), indicating that β-galactosidase is physically associated with cells. ONPG hydrolysis by whole cells presented a monophasic kinetics (Km 36.6 mM) in lactose exponential growth phase cells, but a biphasic kinetics (Km 0.2 and 36.6 mM) in stationary growth phase cells. Permeabilization with digitonin or disruption of cells from both growth phases led to monosite ONPG hydrolysis (Km 2.2 to 2.5 mM), indicating that β-galactosidase is not located in the periplasm. In addition, the energy inhibitors fluoride or arsenate, as well as the uncouplercarbonyl cyanide m-chlorophenylhydrazone (CCCP) prevented ONPG hydrolysis by whole cells. These findings indicate that energy coupled transmembrane transport is the rate-limiting step for intracellular ONPG cleavage. The taxonomic and physiologic implications of the exclusive intracellular location of β-galactosidase of K. marxianus var. marxianus ATCC 10022 are discussed. © 1996 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of mitochondrial dysfunction in cancer has long been a subject of great interest. In this study, such dysfunction has been examined with regards to thyroid oncocytoma, a rare form of cancer, accounting for less than 5% of all thyroid cancers. A peculiar characteristic of thyroid oncocytic cells is the presence of an abnormally large number of mitochondria in the cytoplasm. Such mitochondrial hyperplasia has also been observed in cells derived from patients suffering from mitochondrial encephalomyopathies, where mutations in the mitochondrial DNA(mtDNA) encoding the respiratory complexes result in oxidative phosphorylation dysfunction. An increase in the number of mitochondria occurs in the latter in order to compensate for the respiratory deficiency. This fact spurred the investigation into the presence of analogous mutations in thyroid oncocytic cells. In this study, the only available cell model of thyroid oncocytoma was utilised, the XTC-1 cell line, established from an oncocytic thyroid metastasis to the breast. In order to assess the energetic efficiency of these cells, they were incubated in a medium lacking glucose and supplemented instead with galactose. When subjected to such conditions, glycolysis is effectively inhibited and the cells are forced to use the mitochondria for energy production. Cell viability experiments revealed that XTC-1 cells were unable to survive in galactose medium. This was in marked contrast to the TPC-1 control cell line, a thyroid tumour cell line which does not display the oncocytic phenotype. In agreement with these findings, subsequent experiments assessing the levels of cellular ATP over incubation time in galactose medium, showed a drastic and continual decrease in ATP levels only in the XTC-1 cell line. Furthermore, experiments on digitonin-permeabilised cells revealed that the respiratory dysfunction in the latter was due to a defect in complex I of the respiratory chain. Subsequent experiments using cybrids demonstrated that this defect could be attributed to the mitochondrially-encoded subunits of complex I as opposed to the nuclearencoded subunits. Confirmation came with mtDNA sequencing, which detected the presence of a novel mutation in the ND1 subunit of complex I. In addition, a mutation in the cytochrome b subunit of complex III of the respiratory chain was detected. The fact that XTC-1 cells are unable to survive when incubated in galactose medium is consistent with the fact that many cancers are largely dependent on glycolysis for energy production. Indeed, numerous studies have shown that glycolytic inhibitors are able to induce apoptosis in various cancer cell lines. Subsequent experiments were therefore performed in order to identify the mode of XTC-1 cell death when subjected to the metabolic stress imposed by the forced use of the mitochondria for energy production. Cell shrinkage and mitochondrial fragmentation were observed in the dying cells, which would indicate an apoptotic type of cell death. Analysis of additional parameters however revealed a lack of both DNA fragmentation and caspase activation, thus excluding a classical apoptotic type of cell death. Interestingly, cleavage of the actin component of the cytoskeleton was observed, implicating the action of proteases in this mode of cell demise. However, experiments employing protease inhibitors failed to identify the specific protease involved. It has been reported in the literature that overexpression of Bcl-2 is able to rescue cells presenting a respiratory deficiency. As the XTC-1 cell line is not only respiration-deficient but also exhibits a marked decrease in Bcl-2 expression, it is a perfect model with which to study the relationship between Bcl-2 and oxidative phosphorylation in respiratory-deficient cells. Contrary to the reported literature studies on various cell lines harbouring defects in the respiratory chain, Bcl-2 overexpression was not shown to increase cell survival or rescue the energetic dysfunction in XTC-1 cells. Interestingly however, it had a noticeable impact on cell adhesion and morphology. Whereas XTC-1 cells shrank and detached from the growth surface under conditions of metabolic stress, Bcl-2-overexpressing XTC-1 cells appeared much healthier and were up to 45% more adherent. The target of Bcl-2 in this setting appeared to be the actin cytoskeleton, as the cleavage observed in XTC-1 cells expressing only endogenous levels of Bcl-2, was inhibited in Bcl-2-overexpressing cells. Thus, although unable to rescue XTC-1 cells in terms of cell viability, Bcl-2 is somehow able to stabilise the cytoskeleton, resulting in modifications in cell morphology and adhesion. The mitochondrial respiratory deficiency observed in cancer cells is thought not only to cause an increased dependency on glycolysis but it is also thought to blunt cellular responses to anticancer agents. The effects of several therapeutic agents were thus assessed for their death-inducing ability in XTC-1 cells. Cell viability experiments clearly showed that the cells were more resistant to stimuli which generate reactive oxygen species (tert-butylhydroperoxide) and to mitochondrial calcium-mediated apoptotic stimuli (C6-ceramide), as opposed to stimuli inflicting DNA damage (cisplatin) and damage to protein kinases(staurosporine). Various studies in the literature have reported that the peroxisome proliferator-activated receptor-coactivator 1(PGC-1α), which plays a fundamental role in mitochondrial biogenesis, is also involved in protecting cells against apoptosis caused by the former two types of stimuli. In accordance with these observations, real-time PCR experiments showed that XTC-1 cells express higher mRNA levels of this coactivator than do the control cells, implicating its importance in drug resistance. In conclusion, this study has revealed that XTC-1 cells, like many cancer cell lines, are characterised by a reduced energetic efficiency due to mitochondrial dysfunction. Said dysfunction has been attributed to mutations in respiratory genes encoded by the mitochondrial genome. Although the mechanism of cell demise in conditions of metabolic stress is unclear, the potential of targeting thyroid oncocytic cancers using glycolytic inhibitors has been illustrated. In addition, the discovery of mtDNA mutations in XTC-1 cells has enabled the use of this cell line as a model with which to study the relationship between Bcl-2 overexpression and oxidative phosphorylation in cells harbouring mtDNA mutations and also to investigate the significance of such mutations in establishing resistance to apoptotic stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung Im Rahmen dieser Arbeit wurde der PAC1-Rezeptor (Pituitary Adenylate Cyclase Activating-Polypeptide-Rezeptor), ein Mitglied der VIP-Glucagon-Rezeptorfamilie, aus Sf21-Insektenzellen angereichert. Zur Überexpression wurde das Baculovirussystem genutzt. Die Expression konnte um das 20fache gegenüber natürlichem Gewebe gesteigert werden (40 pmol/mg). Das Drosophila-Expressionssystem und die Expression in suspensionsadaptierten HEK-Zellen erwiesen sich dagegen als weniger effizient für die Überexpression des PAC1-Rezeptors. Der PAC1-Rezeptor wurde mit Digitonin aus den Sf21-Zellmembranen solubilisiert und mittels eines Rhodopsin-Epitops über Antikörperaffinitätschromatographie funktionell angereichert. Der funktionell angereicherte Rezeptor wurde mit einem photoreaktiven und radioaktiven PACAP-Liganden markiert. Anschließend erfolgte der proteolytische Verdau mit Kallikrein. Aufgrund der Zuordnung der radioaktiven Spaltfragmente konnte die Ligandenbindungsstelle im PAC1-Rezeptor auf den N-Terminus und den ersten extrazellulären Loop beschränkt werden. Dieses Ergebnis bestätigt Resultate, die für andere Mitglieder dieser Rezeptorfamilie vorliegen.Alternativ wurde der PAC1-Rezeptor unfunktionell in E.colis überexprimiert und in hohen Maße über ein C-terminales His6-Tag aus Inclusion bodies angereichert. Zudem wurde in dieser Arbeit erstmals ein Einfluss des PAC1-Rezeptors auf die APP-Prozessierung festgestellt. Dies äußerte sich in einem Anstieg der APPsa-Sekretion. Obwohl weitere Untersuchungen über genauere Mechanismen und Wechselwirkungen noch ausstehen, konnte hier gezeigt werden, dass der PAC1-Rezeptor einen positiv regulatorischen Einfluss auf die APPsa-Sekretion besaß. Der PAC1-Rezeptor ist wahrscheinlich ein Stimulator der a-Sekretasen und erstmals in direkten Zusammenhang mit der Alzheimerschen Erkrankung diskutierbar.